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Chapter I
BACKGROUND INFORMATION

1-1., Introduction

Georgia Tech Research Project Na. A-588 was established on 12 September

1961 to assist the Flight Simulation Branch of the Computation Division at
the George C. Marshall Space Flight Center (MSFC) in the investigation and
development of new methods and applications of analog computation within the
following areas of interest:

A - Development of a Generalized Integrator

B ~ Analog-Computer Statistical Analysis

G = Analog-Computer Partial Differential Equation Solution
This project has been assigned to the Georgia Tech Analog Computer Laboratory
(ACL), which operates under the Special Problems Group of the Engineering

Experiment Station's Physical Sciences Division.

1-2, Project Objectives

In accordance with decisions reached during the project organizational
meeting with the Contracting Officer!s Representative (Dr. W.P. Krause of
MSFC), primary emphasis has been placed on areas A and B mentioned above. It
was agreed that the following specific assignments would be undertaken initial-

ally:

Task I. Investigation of electronic techniques for integrating analog
voltage signals with respect to arbitrary variables. The task includes

construction of a working model of a generalized integrator suitable

for use with existing analog equipment,

Task 1T, TInvestigation of analog techniques for the. generation of non-
stationary noise voitages to be used in analog Monte Carlo studigs., Of
particular interest is the problem of nonstationary shaping of.Gaussian,

band-limited, white noise,



Chapter II
ELECTRONIC GENERALIZED INTEGRATOR

2-1. TIntroduction

The ability to perform integratioﬁ with respect to an arbitrary variable
can increase the flexibility of the general-purpose analog computer. We may
distinguish the process of integration with respect to variables other than
time as "generalized integration.!" An all-electronic device is being developed
under this project to perform such integration. It will be referred to herein
as the Electronic Generalized Integrator. Electromechanical devices designed
for the same purpose, but with more limited bandwidth, have been previously

described in the literature,

2-2, Generalized Integration

In order to understand better the operation of the Electronic Generalized
Integrator, we should briefly examine the definition of a definite integral.
This is expressed in Equation (2-1), where the function f(X) is defined to be

continuous over the interval between a and b,

, P n !
(2-1) | 2w ax=1m 2 o)) ax,
a i=1 1 1
where AXi = Xi - Xi—l
. 1 -
and Xi—l < Xi < Xi

The 1limit is evaluated as n is increased and as the maximum of the numbers
AXi,oo.AXn is made to approach zero. A geometrical interpretation of Equation
(2~1) is illustrated in Figure 1. If we now define AX to be a constant and
make this value very small, Equation (2-1) may be replaced by the following
approximation:

b

(2-2) j‘ £(X) dX = AX ; f(X;) .
: a i=1

This approximation describes the integral as the summation of a number of
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samples of f(X) times the constant AX. Since X and f(X) will both be functions
of time, we may make the substitution of a sampling width of At seconds for the
M appearing in Equation (2-2). This substitution will reqﬁire that the length
of the time At for which the sample is taken be less than the shortest time re-
quired for a change in the variable X of amount AX.

The instrumentation of Equation (2-2) was described by Bekey in 1958%, A
simplified block diagram of the analog program he used to perform this instru-
mentation is illustrated in Figure 2., In this program, the variable X is
examined for changes of a preset amount which is defined to be AX. These
changes are detected by storing the value of the X input at some time_to in the
Sample and Hold Circui®% and comparing this value with the value of X at some
later time t.. The comparison is made by the Difference Amplifier and the out-

1
put of this section may be described as in Equation (2-3):

(2-3) B, KX(b) - X(t)] .

When the magnitude of this value reaches the predetermined level, an output sig-
nal is generated in the AX Detector. This signal causes a sample of f(X) that
is At seconds long to appear at the input of the Accumulator, The time, to, at
which the Sample and Hold Circuit is reset to the value of the variable X is the
instant just after that when f(X) is sampled. Since the change in the X input
may be elther positive or negative, the output of the Difference Amplifier is
simultaneously examined for its polarity by the Sign Detector. The Sign De-
Tector controls.the polarity of the f(X) samples that appear at the input of

the Accumulator. If the incremental change is negative, the negative of f(X)
is sampled. The output of the Accumulator then contains the summation of all
the input samples for X on the interval between a and b, If the value of AX
that is preset into the AX Detector is sufficiently small when compared to-the
difference between the two limits of integration, then the output of the Accu-

mulator is a good approximation to the integral as expressed in Equation (2-2).

2-% , The Electronic Generalized Integrator

The Electronic Generalized Integrator constitutes an instrumentation of

Equation (2-2) which is similar in many respects to that used by Bekey. It

%Bekey, George A., "Generalized Integration on the Analog Computer", presented
at the National Simulation Conference, Dallas, Texas, 23-25 October 1958,

=b-



differs primarily in.the method whereby the incremental changes in the X input
are detected and in the use of electronic switches for the sampling gates. The
basic block diagram is shown in Figure 3.

The integrator may be divided into two separate parts, the first being the
section used for the detection of incremental changes in the X input., This In-
cremental Detector section is a simplified version of the AID Converter*° The
information derived from this section may be considered an incremental digital
representation of the X input. When the input to this section changes by a
prechosen amount, the output signal relays this event and information on the
gign of this change to the sampling circuits contained in the other section
of the integrator.

The Incremental Detector is a closed-loop circuit that uses an operational
amplifier with capacitive feedback for the analog storage element. The inputs
to this amplifier are the Reset Pulses and the analog variable X. The analog
input to the amplifier is coupled through a series capacitor which results in
the analog signal appearing at the output of this amplifier with a sign inver-
sion and a suitable scale factor, The Reset Pulses are introduced to the grid
of this amplifier through a series resistor which results in the integration of
these pulses. The volt-second area of the Reset Pulses and the integrating gain
of the operational amplifier circuit are so chosen that the change in amplifier
output voltage resulting from one Reset Pulse is equal to that produced by a
change in the inppt‘analog signal of an amount equal to AX. The output voltage
of this amplifier is the error voltage of the closed loop circuit, When it ex-
ceeds an amount equal to AX, this event is sensed by the Threshold Detector.
The output of the Threshold Detector is used to generate a Reset Pulse and to
close the sampling gate when this event occurs, The polarity of the Reset
Pulse is selected to reduce the magnitude of the voltage at the output of the
operational amplifier providing negative feedback in the closed-loop circuit of
the Tncremental Detector section. An illustration of typical waveforms is
given in Figure L.

The second portion of the Electronic Generalized Integrator has circuitry

similar to that described in Section 2-2, Electronic switches are used for the

%”New Methods and Application of Analog Computation", Final Summary Report on
Contract NO., DA-01-009 ORD-853, GIT/EES Report AL97/T1, 15 may 1961.
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sampling gates in order to allow the sampling time of the variable f(X) to be
decreased. This decrease is necessary in order to increase the bandwidth of the
Generalized Integrator. The accumulation of the samples of f(X) is accomplished
with an operational amplifier with capacitive feedback and resistive input. The
output voltage of this amplifier changes in a staircase manner with each voltage
step being proportional to the amplitude of the corresponding sample of f(X).
This effect is illustrated in Figure l;. For the output of the Electronic
Generalized Integrator to be a useful representation of the integral of f(X),
the size of AX must be made small so that the curve pictured in Figure L

approaches a smooth curve,

2-ly, The Incremental Detector

It was pointed out in the previous section that the Incremental Detector
of the Electronic Generalized Integrator is a simplified version of the Aid
Converter., The detailed block diagram of this section is shown in Figure 5,
Since the need for digital readout circuits has been eliminated, a simplifica-
tion in the logic circuit may be made to reduce the total number of stages re-
quired., The other simplification is based on the elimination of the absolute-
value circuit from the analog program. This was done in an effort to avoid some
of the difficulbies experienced in the frequency response in this section of the
ATD Converter. The absolute value éircuit has been replaced by separate positive
and negative threshold detectors. The threshold detector circuit is identical
to that used in the ATD Converter. It.is basically a NOR circuit in which the
condition at the output is determined by both of the input signals., The circuit
is shown in Figure 6. One input signal is a square wave that is supplied as an
interrogation pulse to both detectors. If and only if the error voltage is
above the threshold level of a detector during the interval of the interrogation
pulse, a pulse appears at the output of this detector. The Positive Threshold
Detector is a complementary circuit of the Negative Threshold Detector. That
is; the NPN transistor is replaced by a PNP transistor and all voltages are re-
versed in sign. It then performs identically to the Negative Threshold Detector
for error voltages of the opposite polarity. A pulse from the output of one de-
tector indicates that the X variable has changed by an amount equal to AX in the
positive direction,while a pulse from the output of the other detector indicates

that the X variable has changed by an amount equal to AX in the negative direc-
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tion. The reset pulse then reduces the magnitude of the error voltage below
the threshold wvalue.

A pulse occuring at the output of a given Threshold Detector is amplified
and used to set a flip-flop circuit that is associated with that detector., A
pulse from a timing source contained in the Electronic Generalized Integrator
is applied simultaneously to the reset inputs of both flip-flop circuits., This
pulse follows the Interrogation Pulse after an accurately controlled interval.
This arrangement allows the output pulses of the flip-flops to be used to control
the length of the Reset Pulses in the Incremental Detector and the length of the
f£(X) sampling pulses appearing at the input of the Accumulating Integrator.

2-5, The Electronic Sampling Gate

The Sampling Gate is a transformer~driven switching circuit using two trans-
istors as shown in the circuit diagram of Figure 7. The transformer connections
to the transistors are so phased that an input signal into the primary of the
transformer turns on both transistors and causes them to saturate. In the
absence of this input signal, no base current is supplied to the transistors ahnd
they may be considered in a cutoff state. This condition is equivalent to having
a very large resistance between the input and the output terminals of the gate
circuit. When the pulse is applied to the input of the transformer the two
transistors saturate, reducing the equi&alent resistance of the gate circuit by
a factor of approximately a million. Since the two transistors are connected
with their emitters together, they form a bidirection switch and will accept
signals of both polarities, The time required for the gate to change states
may be made small compared to the time the gate is closed. Errors due to the
finite resistance in the gate circuit in the open condition are somewhat compen-
sated by the second gate circuit, which is connected to a voltage that is equal
in magnitude but opposite in sign to that connected to the first gate. If this
compensation is not complete, the remainder of the analog signal may be nulled
out. The resistance in the gate circuit remaining in the on period is in series
with the resistor to the grid of the Accumulating Amplifier and is accounted for

in adjusting the gain of this circuit.

2-6, The Analog Program

The analog program included in the Electronic Generalized Integrator is

illustrated in Figure 8. Two operational amplifiers are being included in the
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initial design. If drift problems in the Storage Integrator contained in the
Incremental Detector section become significant, it may be necessary to share
the amplification in this stage over two amplifiers. Two relays are included
in the circuits to provide a means of slaving the Electronic Generalized Inte-
grator to the controls of an analog computer. The relay in the circuit of the
Accumulator Integrator is used to bring the output of this amplifier to zero,
which resets the Electronic Generalized Integrator. This relay is intended to
be controlled by the RESET control on the analog computer, The relay in the
circuit of the Storage Integrator of the Incremental Detector is used to place
the Electronic Generalized Integrator in a HOLD condition. This relay resets
the Storage Integrator)holding the output voltgge of this amplifier at zero,

but not disturbing the voltage stored in the Accumulator Integrator,

2-7. Work Completed

The major portion of the design of the Electronic Generalized Integrator
has been completed and the parts necessary fér construction of a working model
have been placed on order. It is intended that this working model be a complete,
self-contained unit capable of being used with a standard general-purpose analog
computer.

Construction has begun on a minor portion of the circuit,vbut this work has
not progressed very far due to the lack of parts. A breadboard of the circuit
used in the Sampling Gate has been built and preliminary evaluation of this
circuit has shown that it will operate with a linearity of better than 0.2 per--
cent over the intended full-scale range. Better performance is expected by ad-
justing the operating point of the gate transistors., If still further improve-

ment is needed, matched transistors will be used.

2-8, Puture Work

The work during the next quarter should include the completion of a work-
ing unit of the Electronic Generalized Integrator and a preliminary evaluation

of its performance,

-13~



Chapter TIT
GENERATION OF NONSTATIONARY NOISE FOR ANALOG-CCMPUTER MONTE CARLO STUDIES

Task II of GIT/EES Project A-588 concerns the investigation of analog tech-
niques for the generation of nonstationary noise voltages to be used in analog
Monte Carlo studies. Of particular interest is the problem of nonstationary
shaping of Gaussian, band-limited, white noise. As discussed in the Sections
below, efforts during the past quarter have centered about three principal
topics—-~analysis of certain specific stochastic processes, selection of statis-
tical functionals useful in specifying nonstationary noise, and investigation of
linear networks for nonstationary shaping.

Current plans are to issue separately a project technical note covering the
fundamentals of stochastic process theory as it pertains to Task II. This note
will serve as a project reference manual and will define several functionals
which are inconsistently defined in the open literature.

3-1. Analysis of Certain Stochastic Processes

It is not possible to exhibit a convenient representation of the arbitrary
stochastic process. It is instructive, however, to examine the statistics of
a few "closed-form" processes which are expressible as time functions with ran-

dom parameters.

a. Sinewave of Random Phase and Amplitude

The stochastic process represented by
X(t) = x sin(t+y) ,

where x and y are independent random variates, might arise through the use of a
sinewave generator whose output amplitude varies slowly in a random way so that
for each sample function the amplitude may be considered a constant. The random
variate y takes into account the random phase of the signal with respect to the
beginning of the sample. (To make this process more nearly an exact representa-
tion of the experiment, the interval between sample functions should be suffi-

ciently long to provide independence.)
(3-1) EX(t) = Ex Esin(t+y) = (sin t) Bx E(cos y) + (cos t) Ex E(sin y) ,

which,in general, is a function of 1.

The covariance function is given by

(3-2)  Gov(X) = Cy(T,t) = EX(6)K(t+T) = A[x° sin(t+y) sin(t+T+y))

% Ex2 [cos T - cos(2t+T) Ecos2y + sin(2t+T) Esin2y] ,

b}

-1l=-



which, in general, is also a function of time, t.

The time average of X(t) is given by

a a

. ] 1
_ AX(t) = 1im 5= j X(t) dv = 1lim 7—\]‘ x sin(t+y) dt = 0
(3-3) aew 23 ), g0 28, ?

invariant with respect to the sample function chosen,*

The time-statistic equivalent of the covariance function, the correlation

function,is

a
R (T,%,y) = AX(£)X(++T) = 1im glf Csin(tty) sin(t+y+T) dt |
a0 a -4

which reduces to a form invariant with respect to y:

(3-4) | RX(T,x) = % xzcos T.

If we assume that the random phase, y, is uniformly distributed over the

interval (-n,+n) with probability density function

() = 55 Iyl<n
(3-5)
P(y) =0, [yl

then the process mean, as given by Equation (3-1), reduces to zero identically
in t. That is, " )

Ei(t) = AX(t) = 0, all t.

Also, under the assumption of (3—5), the covariance becomes invariant in

t and Equation (3-2) reduces to
1 2
(3—6) CX(T) = -2-(COS T) Ex 3

which is characteristic of the "wide-sense stationary" process.

“The symbol "A" is used herein to denote the time-average operator, as con-
trasted with the ensemble-average operator "E",

-15-



If the power spectral density function, fX’ is defined as the Fourier

transform (with respect to T) of the covariance function,

(3-7) flt) = | o1,6) exp(-go) e

then Equation (3-6) yields

(3-8) fx(w) = Ex2 [6(awtl) + 8(w-1)] .

[N P=]

Note that the definition of (3-7) applied to the nonstationary process of
Equation (3-2) yields a complex power spectral density function which is of
little physical significance. Other definitions in common use, such as those
suggested by Page%% and Middleton**%, have other drawbacks which limit their
usefulness. Page's "instantaneous power spectrum" yields a random variate and
Middleton's "intensity density" is identically zero for all finite-energy pro-
cesses. Considerable attention is given to this problem in the forthcoming

technical note.

b. Sinewave of Random Phase and Frequency

Let x and y be independent random variates with the probability density

function of y given by

1
p,(¥) = 5 5 lylsn
p(y) =0 , lyln
and that of x satisfying
(3-9) p(x) = p (%) .

"There does not appear to be a consistent definition of the power spectral
density function for nonstationary processes. The definition used here is
essentially that of Kharkevich: A.A. Kharkevich, Spectra and Analysis, Con-
sultants Bureau, New York, 1960 (Translated from Russian), p. 1L9.

C.H. Page, "Instantaneous Power Spectra', Journal of Applied Physics, Vol.
23, No. 1, Jan. 1952.

3

Dav1d Middleton, An Introduction to Statistical Communication Theory,
McGraw-Hill Book Company, New York, 1960,

16~



Construct the stochastic process
X(t) = 2sin(xt + y) ,

where the factor "2" is chosen (without loss of generality) to make the average
power unity. This process would arise, for example, through the use of a sine-
wave generator whose frequency varies slowly in a random way so that for each
sample function the frequency may be considered a constant. As in Section 3-la,
variate y accounts for the random phase of the signal with respect to the
origin.

The expected value of X is zero for all t and the covariance function is

invariant in t:
e ,
CX(T) = E(cos xT) = ]ﬂpi(x) cos xT dx .
-0

The process is therefore wide-sense stationary and the definition of power
spectral density given by Equation (3-7) is applicable. Applying this defini-

tion, we obtain

w o o)
fx(w) = j\ CX(T) exp(-jwT) dT = ]ﬂ exp(-jmT)\[ px(x) cos xT dx dT .
-0 - -0
Interchanging the order of integration,
(ed] 0
fX(a)) = f px(x) f exp(-jwl) cos xT dT dx
-00 -® .

]

QO
ﬂf P, (x) {&(w-x) + 8(wtx)] dx
-

]

n [P (@) + p(-0)] .
From Equation (3-9)we may write, finally,

fx(m) = 2npx(m) .

-17~



Thus, this process has the unusual property that the power spectral density
(in the sense of Equation (3~7)) is proportional to the probability density of
the principal primitive variate.

c. Gaussian, Band-Limited, White Noise

Most commercially available noise generators deliver an output voltage
which approximates the Gaussian, band-limited, white noise process, It is use-
ful, therefore, to express this process in closed form., Such a representation
can be developed as shown below.

It is convenient to discuss first the following lemma:

® sin(u-nn) sin(u+v-nn)
Lemma I: Let S = 2 °
u~-nrn UV N1

n==00

then S = 2BV -

Proof: Write S in the form

sin u cos nn ., sin(u+v) cos nn
u-nn u+v-nn

[ 9]
]
™M

n=-m

i

sin u sin(utv) z (u-nn) (u+v-nn) -

Expand the summand by partial fractions:

. _ 1/v 1/v

S = sin u sin(u+v) g[(ﬁ~ﬂ§§ - (u+v—nﬁ)]

o s 1 1
- sin u sin(u+v) g[ u-nm__ utvenn ]
v

Now

sl ol 5 o octnu- ﬁl

n unm U gl u-nm 0 ™
and 3L - oo -3 L

n ukv-nn nn

nio

*See, for example, D,H. Menzel, Fundamental Formulas of Physics, Section 1.8,
Dover Publications, New York, 1960.
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Then S may be expressed as

5= sinusin(utv) ropy gy g 3; mctn(uty) + 3 =]

v n#Qn . nﬁonn
_ sin u sin(u+v) . sin v v
v sin u sin(u+v) °
And, finally,
S = sin v , QED.-

v

For the construction of the Gaussian, band-~limited, white noise process,
let X, be the generic symbol for a set of independent, zero-mean, Gaussian

. . . 2 .
random variates with common variance, o ., Form the stochastic process, XN’

X .
- sin(at-nn)
XN nf-an at-nn °
Then XN(tl),...,XN(ti),,..,XN(tk) is a k-variate Gaussian variable for every
N. Since
Exixj = 0, i#3,
and
Exi = 6%, all 4,
and
o s'n(aﬁ—n ) 2
z ['Egﬁ:ﬁﬁ-ﬂ- ] =1 (a special case of Lemma I) ,
n-:—n

then there exists a limiting random variable, X(t), given by

00 .
. ; sin(at-nn
X(t) = 1lim XN(n) = I x, "E%IEH'Ll .
N~ 2= =00

. . . . 2 .
Further, X(t) is Gaussian with zero mean and variance o , The covariance of

X is given by

]

CX(T) EX(t)X(t+T)

i

sin(at-nn) sin{at+aT-ngn)
E{[% *n at-nn ] [%an at+aT-nn 11 .
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Because of the independence of the xn's, this may be written

CX(T> - F % x sin(at-nn)  sin(at+taT-nn) _ 2 5 sin(at-nn)  sin(at+aT-nn)

[ 0) °
n at-nn at+aT-nn n at-nn ° at+aT-nn

By Lemma I, this reduces to

2 sin aT

CX(T) -9 aT °?

which is invariant in t and, therefore, represents a wide-sense stationary
process. But X(t) has been shown to be a Gaussian process and is then
strictly sf;aﬁ;ion::t:r:}r,_'vr

The power spectral density may now be computed as the Fourier transform

of CX:

fw) = I, ol

il

fylw) =0 lol=a .

Hence, the_stochastic process represented by

(3-10) X(t) = ;? x sin(at-nn)
= -0 at-nn 4

where the xn's are independent Gaussian variates with zero mean and common
variance, is a stationary Gaussian band-limited white noise process with band-
width a.

3-2, Functionals Useful in Specifying Nonstationary Noise

The specification of statistical properties in stationary processes is
not a particularly difficult proposition. In a given Monte Carlo study, for
example, we might require a noise souce which delivers a stationary process
having a specified power spectral density (or, equivalently, a certain covari-
ance function) and a specified univariate probability distribution. It may be
difficult, in cases, to generate the desired process, but it is generally not

hard to determine what is required.

%J.H. Laning and R. H. Battin, Random Processes in Automatic Control, McGraw-
Hill Book Company, New York, 1956, p. 156.
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The selection of appropriate functionals to describe a nonstationary
process, on the other hand, may require much effort. In the first place,
several of the functionals commonly used are not universally defined in the
same way. Secondly, the nonstationarity rules out the possibility of ergod-
i¢ity and requires that meaningful specifications be made on the ensemble
basis,

Considerable effort has been devoted to this problem during the past quar-
ter, with the following tentative conclusions:

(a) The covariance function, as defined by Equation (3-2), appears to be
a more useful and meaningful function than the power spectral density. As
mentioned in Section 3-1, this latter quantity is not well defined and may
lead to a complex functional or a random variate,

(b) Generally speaking, the complete specification of a nonstationary
process is impractical. If X(t) represents the process, a complete descrip-
tion is provided only by citing the k-variate distribution of [X(tl),...,X(tk)]
for every integral k (or the equivalent information). Thus it is necessary to
select carefully the statistical parameters of principal interest. (This is
true of many stationary processes, also, but appears to be a more vital ques-
tion in the nonstationary case.)

With regard to the input random process, two decisions must be made when
setting up a Monte Carlo study: (1) Which functionals or parameters will be
used to describe the random process, and (2) What is the detailed form of the
chosen functionals. Decision (1) is usually made on the basis of the response
variables of interest in the system under study. Decision (2) is dictated by
the physical nature of the stochastic process being simulated. To illustrate
the way in which these latter specifications are derived, we consider the fol-
lowing very general example.

A rocket is to be fired in a vertical attitude and assumed to rise at a
constant rate. As it moves through the atmosphere, it is subject to buffeting
winds which are random in nature. It is desired to simulate the rocket system
and observe its response to the simulated random wind, A number of computation-
al runs will be performed to gather statistical data on the rocket performance,

Conceptually, at least, the required data on the statistical behavior of
the wind could be obtained by placing sensing elements at various altitudes

and recording sample functions of wind velocity. If we assume that the speed
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and direction of the wind are independent scalar quantities, then these may
be simulated separately and combined in the proper relationship by a resolver,
For simplicity we will consider only the scalar wind speed.

Viewed as a whole, the wind speed may be thought of as a stochastic pro-
cess of two parameters-~the altitude, h, and time, t. Let the process be
denoted by X(h,t) and symbolize the mean and covariance by‘uX(h,t) and
CX(h,H,t,T)z

fl

hy(B,0) = EX(h,t)

i]

CX(h,H,t,T) EX(h,t)X(h+H, t+T)

If it is understood that the rocket will be launched only under good
weather conditions and at a particular time of day, then it may be assumed
that the wind at a given altitude may be represented by a stationary stochas-
tic process.* Under these conditions, the mean and covariance are invariant
in t and may be written as uX(h) and CX(h,H,T),

Since the rocket is to rise at a constant rate, v, we have for the alti-
tude |

h= vt

and H= vT,

The process may now be written in terms of a single parameter, t: X(vt,t),

This is expressed more concisely as a new process Y(t) having mean and covari-

ance given by

wy(t) = BY(t) = py(vt) = EX(vt,t)

CY(TSt) = EY(t)Y(t+T) = cX(vt,vT,T) = EX(vt,t)X[v(t+T),t+T] .
If these quantities seem appropriate to test that portion of the rocket in which
we have an interest, then efforts may be made to génerate a nonstationary pro-

cess having these properties, Otherwise, more appropriate functionals may be

derived in the same way and attempts made to generate a suitable process.

%However, the rocket will be changing altitude constantly and this considera-
tion will lead to a nonstationary process,
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3-3. Linear Networks for Nonstationary Shaping

There appear to be at least three techniques which may be employed (sepa-
‘rately or in combination) to derive nonstationary stochastic processes having
prescribed properties: nonlinear networks (possibly time-varying), time vary-
ing linear networks, and utilization of transient effects in time-invariant
networks, During the past quarter attention has been given primarily to the

use of linear networks.  The results are summarized below,

a. Time-Varying Linear Networks

The analysis of time-varying networks has been extensively studied by
several authorities, notably Zadeh and Darlington, Zadeh in particular has
developed techniques for obtaining the system function and impulsive response
of linear variable networks from the so-called fundamental equation of the
network--i.e., the differential equation which relates the input and output,

If the fundamental equation of the network is of the form

L(p)t)Y(t) = K(p, t)x(t)

where x(t) and y(t) are the input and output of the network and L and K are
linear differential operators, then the system function, H(jw,t), for the net-

work must satisfy the following differential equation:

X oL 455 oo 290 dH L, K o
L 3(Jo)  dth L &(w) dt L -

The boundary conditions for the above equation must either be given or be de-

rivable from the network. In practice, even for relatively simple networks,

the equation for H(ja}) is so complex as to preclude the possibility of obtain-

ing a closed-form solution and requires the use of some rather sophisticated

“One rather interesting nonlinear technique has been discovered. Let a diode
function generator be driven by a noise source having probability distribu-~
tion P(x)., Adjust the function generator to the functional form of P(x), Then
the function generator output will have probability density uniform on the in-
terval (0,1) and zero elsewhere, This technique follows from the theorem:
"Any density for a continuous variate x may be transformed to the uniform den-
sity f(y) = 1 (0 <y<1) by letting y = G(x), where G(x) is the cumulative
distribution of x." (A.F. Mood, Introduction to the Theory of Statistics,
¥eGraw-Hill Book Company, New York, 1950, page 107.

""L.A. Zadeh, "Frequency analysis of variable networks," Proc, IRE, vol, 38,
pp. 291-299, March, 1950,
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approximation techniques which are, at best, applicable only over a limited
range of the independent variable,

As an example of the techniques developed by Zadeh, consider the follow-

() =N\ — * y(t)
* R(t) J_

T

ing circuit.

It is a simple matter to write the fundamental equation for this circuit:
cr(+)% fﬁf) £ y(t) = x(t) , or

[CR(t)p + 1] y(t) = x(t) , ©p=

Q-alQ-
o

The .system function is then obtainable from the derived equation

dH |, JwCR(t) + 1 q =
dt CR(t)

1
CR(t) °

which yields

£ £
H(jo,t) = exp {mfi-@%%%yi-l aa) | SHET P [ﬁ%—l dy] ap .
0 0 0

Having obtained the system function for the network, it is now possible to
derive the impulsive response-s=ise,, the response of the network at time t to
an impulse applied at time too Zadeh shows that the impulsive response

W(t,t_ ) and the system function are related by the following integral equation:

(e 0]
1 " joo( =t
W(tyt) = 5 L}oH(Jw,t)eJ (-t )ae bt
which yields for W(t, to)
t
Wbyt ) = memre exp[wf da_ t> b
"o CR( toi " CR(a ? o °
0]

Notice that when R{t) is constant, the results obtained above reduce to the



system function and impulsive response for the simple R-C section low-pass

filter as expected:

. s 1
H(Jjw,t) = H(Jw) = T T
| -(t~to)/RC
W(t,to) = VI(tmto) = £5e s b=t

Suppose the network in the example is driven by band-limited Gaussian white

noise such that the. input power spectral density function is given by

o] <a

Gl(w) N 0, otherwise

and the corresponding covariance function is given by

G(T) = B{x(t)x(++T)] = %E E;L%STEI_)_

Since the input has zero mean, the output also has zero mean; further, the

covariance function for the output process is given by

Co(t,T) = E[y(t)y(t+T)]
t+T t B+ T

,,, Y
N Ege"p{ CR(a) fc%ﬁ ff Slz:;)R( )exp[gCR(a) fCR( aylabor .

No attempt will be made here to derive an output power spectral density
function., It may be noted in this connection, however, that Fourier trans-
formation of the output covariance function yields a complex expression with
little physical significance,

Consider now a particular form for R(t):

t

R(t) = T -

Substituving this expression for R(%) back into the previous results yields

. . =Jwt
H(Jmst) = 3;% {1 -e J 1
Wb, ) = =

30 .t b

t t4T

Cy(t,T) = }?E%%T'Ff f%%%%:ﬁ dp dy .
0 0
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It is clear from the example and from the general equation for the system
function of a variable network that even relatively simple networks having only
one variable element lead to expressions for network parameters which are so
cumbersome as to be all but unmanageable. Since the analysis of known networks
lead to such unwieldly expressions, it is easy to see that the synthesis of
such networks borders on the impossible. Because the synthesis problem is of
primary importance, the class of variable networks under consideration has
been restricted to the so-called separated networks., These are variable net-
works which can be represented by the cascaded combination of a linear invari-
ant network and a linear variable network that contains no reactive components.

The block diagram for a typical separated network is shown below,

' Network N ] ‘ Network K |
X(t), N( ) {__Y@L K(t) ’ L, 4(t)
| Wy(t,) | | we(e,t,)

The behavior of the network N is well knownj; further, it is easy to show that
since 2(t) = K(1)Y(t), then E[Z(t)] = K(t)E[Y(t)] and the covariance function
for Z(t) is given by

C,(t,T) =~ E[2(£)2(t+T)] = K(L)K(t+T) Cy(T) .

It is clear that this class of variable networks yields more tractable results
than does the general variable network, while not seriously compromising either
flexibility or utility. The properties of this general class and applicable
synthesis techniques will be more extensively investigated during the coming

report period.

b, Invariant Linear Networks

The technique of utilizing the transient response of time-invariant net-
works to derive nonstationary stochastic processes has been investigated by
Lampard,* The covariance function and probability distributiornr function of
the output process are derived when the input is stationary, white, and

Gaussian, but no attempt is made to develop synthesis techniques.

*D.G. Lampard, "The response of linear networks to suddenly applied stationary
random noise," IRE Trans. on Circuit Theory, Vol. CT-2, L9-57, March 1955,
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It is felt that this technique and the results derived by Lampard hold
a great deal of promise for that restricted class of problems where it is suffi-

cient to specify only a single parameter of the output process. As time per-
mits beyond the work outlined in the preceding subsection, this technique will
be further investigated in light of its application to the problem of inter-

est and an attempt will be made to develop procedures for synthesis.

3-l. Planned Work for the Coming Quarter

During the coming report period, efforts on Task II will be directed
toward completion of the technical note discussed in the introductory para-
graph of Chapter IIT and toward further development of the linear-network
shaping techniques. If time permits, a limited amount of experimental in-
vestigation will be conducted using the Georgia Tech Analog Computer Labora-
tory facilities. The principal aim of this empirical work will be verifica- .
tion of the shaping techniques to be developed, particularly those resulting

from the "separated networks" discussed in Subsection 3-3a.
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