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ENGINEERING APPLICATIONS OF
ANALOG COMPUTERS

by
Lawrence T. Bryant, Marion J. Janicke,
Louis C. Just, and Alan L. Winiecki
INTRODUCTION
This publication is an extension of Bryant, L. T., Just, L. C., and
Pawlicki, G. S., Introduction to Electronic Analog Computing, ANL-6187

(July 1960). Six experiments are presented from the fields of reactor
engineering, heat transfer, and dynamics.

The mathematical representation for most of these experiments is
in the form of nonlinear differential equations. In usual practice sim-
plifying assumptions are introduced to linearize the equations. This
linearization may alter the mathematical model sufficiently to cast doubt
upon its applicability. If an analog computer is available, the nonlinear
equation may be solved directly.

The presentation of these experiments has been designed to pro-
vide insight into physical phenomena and their mathematical representa-
tion. The steps required for producing the analog solution will be shown,
as well as complete information for duplicating the solution. Graphical
results are provided.

The format of each experiment will be:

1. Description of the problem

2. Mathematical statement of the problem including:
a. Constants
b. Initial Conditions

3. Preparation of machine equations
a. Machine Variables
b. Scale Factors

4. Analog circuit diagram
a.. Flow Sheet
b. Potentiometer setting sheet
c.. Static Check sheet

5. Graphical representation of the solution.

6. Bibliography
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I. DECELERATION OF A REACTOR CONTROL ROD

1. Problem Description

When a control rod is suddenly inserted or rejected from the core
of a reactor, the rapid motion is quickly dampened by a dashpot or buffer
mechanism, usually consisting of a hydraulic system which prevents sudden
shock of the control drive mechanisms.

Constant deceleration-type dashpots give the most favorable charac-
teristics for protection against shock loads. Essentially, a piston moves
through oil, and the oil is squeezed into small clearances; this process in
turn develops large amounts of frictional resistance. This friction, which
is proportional to the speed of the moving piston, instigates the retarding
force which slowly stops the motion of the control drive.

This hydraulic drag and the ensuing kinetic energy dissipation are
frequently described by differential equations. Elias' equation of buffer mo-
tion(I-1)* is given by

2.2

de 2 um DpLg X

dX = w(L4C - CX)?

Various plots of the buffer characteristics are shown on Figs. 2, 3, 4, and 5.

Many parameters may be investigated before the design conditions
for a particular problem are satisfied.(I-2,1-3)

2. Mathematical Statement of the Problem

a. Equations:

dVp 2 umDpLG X
= - : (1)
dX W(L4C - CX)?

b. Constants and Variables

Symbol Description Value Units
Vp velocity into the dashpot Variable ft/sec
Dp diameter of the dashpot 2 inches
C dashpot clearance 0.03 inch
Lg dashpot length 6 inches
U viscosity of the dashpot fluid Variable lb/(ft)(sec)
w weight of the control rod 290 1b
X distance into the dashpot 6 inches

*References in each section are given at the end of each section.
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c. Initial Conditions

Att = 0:
X =0
dX _
ol 70 ft/sec
dv.
=L -
dt 0

d. Analysis of Equations

Since

dVp  dvp/dt  gax /g2 2

dX =~ dX/dt = dX/dt ’

the original equation may be restated as

2 2 umDEL2 2
% (L pd ) [ X)L _ (3)
dt WcZ dt Ld - X

3. Preparation of Machine Equations

a. Machine Variables and Scale Factors

X' = bX a =103
t' = at ; b = 102

b. Scaled Equations

&X' b (2vmDRLE)(x')[ax' a b\
dt'z a? wc? b dt' b/\Lgb - X'
2
b 2 um DpLd x X 1 2
T T a wc? dt! Lgb - X'

c. Machine Equation

—

5)

When the values of constants and scale factors are introduced
into Eq. (5), the machine equation results:

2% Ts LY
T - - (5:07n) X (dt')(SO - x') : (6)
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The initial conditions (interms of voltages) are:

X' = bX(0) = 0

ax' b dX
28 222 70
at’ 2 dt 7.0 volts

X' b a®x _
dtlZ aZ dtZ

4. Analog Circuit Diagram

a. Flow Sheet

+100V -loov -100v
AL
©)
. B[AB 60 _x"2
-X X 50-x' | 1N 100} (50-X1"
I 2 > A{DXRe 100
¢|100]
8|A
B Y47
D e
c[i60]7 108x'x’
5(50-x)2
|’ -Xx'75 A
c

104x!
-3
<]_5650-x)

Fig. 1. Circuit Diagram for Solution of Elias'
Equation of Buffer Motion
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b. POTENTIOMETER SETTINGS

ANALOG COMPUTER

Argonne Rational Laboratorp

APPLIED MATHEMATICS DIVISION

PROBLEM NO.

REACTOR CONTROL ROD 3’1?:"‘“ ne-
meER TION
POTENTIOMETER NO. MATHEMATICAL CORREC
DRAWING | mACHINE VALUE VALUE TION SETTING SET PARAMETERS
1 Y, (volts) 7.00 0700 a=103
2 X' (volts) -50.00 5000 b = 10
3 0.2 0.2000 2000
4 ﬁ (5.07 ) Figf"zr&_s_ Vp(0) = 70t/sec
K, = 0.0494 10.0125 0125 Dp = 2 in.
K, = 0.0795  10.0202 0202 C = 0.03 in.
Ky = 0.102  |0.0258 0258 Ly = 6in.
= 290 1b
X = 6 in.
1 V;,(O) (volts) *
V, = 70 ft/sec 7.00 0700
V, = 50 ft/sec 5.00 0500
For
Vs = 20 ft/sec | 2.00 0200 Figs. 3& 4 |
2 X' (volts) -50.00 5000
3 0.2 0.2000 2000
4 1—% (5.07 k2) |0.0202 0202
AMD-2C (8-57)
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Argonne Rational Laboratory

APPLIED MATHEMATICS DIVISION

ANALOG COMPUTER

c. STATIC CHECK

PROBLEM NO.

DRAWING NO.
DATE
REACTOR CONTROL ROD
DECELERATION
UNIT NUMBER INITIAL
UNIT OUTPUT REMARKS :!“:E' conDl- | sET PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | +ion
1 K, = 0.0795
POT 1 + 7.00
2 -50.00
FOR STATIC

5 -10.00 CHECK
3 - 1.40
4 |+ 002
AMP 1 - 7.00
2 +10.00
3 +40.00
4 +16.00
5 - 8.75
[3) - 0.02
MULT 1 -16.00
2 + 8.75
3 + 0.88

AMD-2A (8-57)
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II. PRESSURE VARIATIONS THROUGH A PACKED BED

1. Problem Description

The future applications of nuclear power sources will depend on
whether reactor technology can match the demand for higher power densities
and higher operating temperature?. A Fopula.r concept for advanced appli-
cation is the packed bed reactor. I1-1) (11-2) Equations of fluid flow and
heat transfer for this concept are dependent upon the particular packed-bed
system, particle shape, and the fluid for which they are developed.

The solutions to problems for this type of reactor design are usually
obtained through use of empirical corrections.(II-3) An equation derived by
MacFarlane(lI-4) from the basic Bernoulli equation illustrates a fundamen-
tal method for calculating the performance of packed bed arrangements.
This relationship

dP (K + Hx)P
dx E +Dx - P2

expresses in differential form the variation of pressure and distance of a
packed bed one square foot in cross section. MacFarlane also indicates
four other general methods used for calculating laminar fluid flow in packed
beds and describes their derivation.

2. Mathematical Statement of the Problem

a. Equations and Constants

dP _ (K + Hx)P (1)

dx ~ E + Dx - P?

QPG 1b?
= —— R ¢
D 2oPeTeCy 1.73 x 10* T3
G P, s 1b?
G = ——— = 3.439 x 10® —
ch Dppo ft>
fGQP, 1b?
H = = 5.22 9 —
2g.Dp, Py ToCp 5.22 x 107 3
2 1b?
E = G*Po /gcpo = 11304
2
K =D+G = 3.44x108%

Google



Q = Volumetric heat generation rate = 5 Mw/ft3

G = Mass flow rate of helium coolant = 0.378 lb/(sec)(ftz)
gc. = Gravitational constant = 32.17 ft/secz

p, = Initial density = 0.083 lb/ft?

To = Initial temperature = 200°F

P, = Initial pressure = 10 atmospheres
Cp = Specific heat at constant pressure = 1.25 BTU/(lb)(°F)
Dp = Diameter of the particle = 200 microns

f = friction factor,a +8 (x/L) = 285 + 230 (x/L)

b. Initial Conditions

P, =2.12 x 10* 1b/ft?
X = 0
L =0.2 ft.

3. Preparation of the Machine Equations

a. Machine Variables and Scale Factors

x =t *(final) - (final)

t' = at dt' = adt a = 102 (2)
P'= bP dP'= bdP b = 1073

Ploy = bP, = (10-3)(2.12 x 10* = 21.2 volts,

t'(final) = at(final) = 10%2(0.2) = 20.0 volts

b. The Scaled Equation

Substituting equations (2) into equation (1), the scaled equation is
Qbtained:

dpP' 1_{ [K + (H/a)t'] P! } . (3)

dt” " a L'E + (Dt'/a) - (PZ/B?)
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c. The Machine Equation

When numerical values are placed into equation (3), the machine
equation (4) results:

dP' _ (3.44+0.522 t')P!
dt! 0.0002 t' - P'2 (4)

4. Analog Circuit Diagram

a. Flow Sheet

o >
+100
8 C
104 10
/4\-P' ® 10 5>
E ‘
+100 ) c
1021102
£
B C

]
1
i‘ Lo—:*‘:p—{—’, g E;Io
—-—ﬂ--Y'\ T N -100v
— \UJ
ORIGINAL POSITION OF RELAY

TO HOLD RELAY

500N
ow

+60V

Fig. 6. Circuit Diagram for the Solution
of MacFarlane's Equation
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QArgonne Rational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

b. POTENTIOMETER SETTINGS

PROBLEM NO.

DRAVWING NO.
PRESSURE REDUCTION THROUGH A PACKED BED DATE
POTENTIOMETER NO. MATHEMATICAL CORREC-
ORAWING | MACHINE VALUE VALUE TION SETTING SET PARAMETERS
1 0.0la volt -1.00 0100
2 Pob volt +21.2 2120
3 b’D/a 0.0002 0002
4 b?H/a? 0.5220 5220
5 b’K/a 3.44 0344
6 V10 3.162 3162 |(14)
7 aL -20.00 2000
Argonne Rational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER
c. STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
PRESSURE REDUCTION THROUGH A PACKED BED
uNIT e | oureur REMARKS INTE- It;‘;:il;l: SET PARAMETERS
DRAWING | MACHINE (voLTs) GRATOR TION
AMP| 1 +1.00
2 0.0
3 -3.96
4 -21.2
5 +66.9
6 44.7
7 -0.188
8 0.0
poT | 3 0.0
4 0.52
6 -6.69
MULT| 1 -0.84
2 -44.7
+1.88




5. Graphical Results

25

20

PRESSURE, LBS./FT'X 10°*

o 0. 02
DISTANCE,FEET

Fig. 7. Pressure Versus Distance

6. Bibliography
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III. REACTOR KINETICS OVER MANY DECADES WITH THERMAL
FEEDBACK (SIMULATION OF A TREAT TRANSIENT)

1. Problem Description

The TREAT reactor was designed to generate a very large,
transient, thermal flux field of short duration.(III-1) The maximum in-

tegrated flux is greater than 10%° neutrons/cmz.

The core is a dispersion of highly enriched uranium (as the oxide
or carbide) in a graphite matrix. The graphite serves as a moderator, a
heat sink, and a generator of a sizeable negative temperature coefficient.
The latter effect is due to the fact that the energy of the thermal neutrons
increases with graphite temperature thus causing an increase in the leak-
age probability.

The purpose of this experiment is to simulate a TREAT transient
initiated by control rod withdrawal and terminated by the negative tempera-
ture coefficient. Since a large excursion is expected, the reactor kinetics
equations will be transformed by a substitution.(III-2

7 =£4n n(t)/n(0)
The equations describing the neutron kinetics (with 6 delayed groups)
will be solved on the analog computer. They will be forced by changes in

Kex-

2. Mathematical Statement of the Problem

a. Equations:

dn B § B4
:1?_7 I:(l - B)Kjex + Z —B-wi]

1=1

d¥; dn d .
Gi:-:)‘-iﬁKlex‘Et"‘wi(ki"'%) i=1,...,6,

where

£n n(t)/n(O)

e c,(t)/c,(0)
¥ =€ -1

Kiex = Kex/ﬁ

3
n

m
1]

Google



b. Constants

£ =0.00755

J =8.6x10"*%
i A Bi
1 0.01246 0.00025
2 0.0315 0.00166
3 0.1535 0.00213
4 0.456 0.00241
5 1.612 0.00085
6 14.3 0.00025

c. Initial Conditions

n(0) = 0

¥ =0
Kiex=0

3. Preparation of Machine Equations

a. Machine Variables

t' = at

n' = b7
Kiex = ¢ Kiex

i =d;¥;

b. Scale Factors

a =10
b =2
c =25
d, =d; = =dg =2

19
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c. Scaled Equations

1 6 bB
dn - B b(l = B) 1 __1 1
< Cag [—c Kiex * 3P 101]

!
B R . B G .\ T
dt'  ac 16X "y dat' ~ "i\a b 4t ' ’

d. The Generation of K;ex

The expression for K., is made up of two parts: the contribution
of the control rod and the contribution of the negative temperature coeffi-
cient, that is,

Kex = K(t) - K(n,t) ,

where
K(t) = {0.04t for 0<t<0.5 sec
0.02 for t>0.5 sec
and
K(n,t) = 1071 [ n dt
Since
Kiex =7§‘Kex
then

Kiex = £ K() - %K(n,t) ,

or, more simply,

Kiex = K|(t) - K}(n,t)

L

1
0.04 = for 0<t'<0.5a sec

B a
K, (t') = c
0.02 -B-for t'>0.5a sec

K,(t') can be generated by means of an integrator and a relay.

Google



The generation of Kj(n,t) is more complicated: a function
generator is needed. If the machine variables and scale factors are sub-
stituted into

K(n,t) = 1071 [ ndt ,

the result is

Ki(n,t) = EcaT 10710 [ ndt!

But

n = n; n(0) ;

therefore
cn(0 -
K{(n,t) = E(a._l 1071 [ n,at

The analog computer will supply 7 = £n n; (due to a change in
variable) and since efn m = n,

K|(n,t) =°Z¥1o“° [ eMat

After the terms are collected,
Ki(n,t) =c [ e%dt'
where

a=7+£nn(0)-£n 10! - fn ap

For the values given the constants, and for n(0) = 102,
a=7 - 15.836.

Then 25 e%* will be generated with a diode-function generator
(DFG).(HI' 3) In order to decrease the slope of the function, the DFG will
be driven by 107 - 100.

Google
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In the actual experiment, the input to integrator 3 is removed

(by means of a relay) until 25e% = 0.01 volt.

DFG DATA
7 10m - 100 a 25 %
0.0 -100 -15.836 -
8.012 - 19.88 - 7.821 | 00.01
9.938 - 0.62 - 6.438 00.04
10.42 + 4.2 - 5.416 00.11
12.0 + 20.0 - 3.836 | 00.54
13.0 + 30.0 - 2.836 1.47
14.0 + 40.0 - 1.836 3.96
15.0 + 50.0 - 0.836 10.59
16.0 + 60.0 +0.164 | 29.45
17.0 + 70 + 1.164 80.75

e. Machine Equations

d 1
S 2 0.0697 Koy +0.3512(0.03319] + 0.2199%}

dt'
+0.2821%4 + 0.3192¢4 + 0.112694 + 0.03319))

.jtl'i =_g—?,-'-o.00131//; - 0.510{%

jff' = - -0.003294 - 0.593 S

:tif = - S -0.01549} - 0.5y} S

dy ' :
Y4 _@—-0.045611/.1 - 0.5y, S

dt' dt'

Google
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ay, dn' dn’
Et—'5= 0.0001 K; oy -~ - O 161295 - 0.5¥5 Ty

dy, an' dn'
rroall 0009 Kjex -5 - b 43y, - 0.5¢¢ T

Kiex = K;(t) - Ki(n,t)

K!(t) = 13.25t' volts for 0<t'<5 sec
1 66.23 volts for t'>5 sec

Ki(n,t) = 25 exp (N - 15.836)

4. Analog Circuit Diagram

a. Flow Sheet

=28 _00-100)

2>

EXPERIMENT 3-Kley

EXPERIMENT 3 - 7= In v,

Fig. 8. Circuit Diagram for Duplication of TREAT Transient
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Argonne Rational Lunosutorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

b. POTENTIOMETER SETTINGS

PROBLEM NO.
DRAVWING NO.
THE TREAT REACTOR PATE
POTENTIOMETER NO. MATHEMATICAL CORREC-
DRAWING | MACHINE VALUE VALUE TION SETTING SET PARAMETERS
1 Bb(l - B)/agc  10.0697 0697 £=8.6x10"*
2 B/ab 0.8779 8779 B = 0.00755
3 bB,/d,8  [0.0331 0331 A, = 0.01246
4 bB/dB  [0.2199 2199 A, = 0.0315
5 bBs/dsB  |0.2821 2821 Ay = 0.1535
6 bB,/dB  [0.3192 3192 Ay = 0.456
7 bBs/dsB  [0.1126 1126 As = 1.612
8 bBe/deB  0.0331 0331 A = 14.3
9 A /a 0.0012 0012 B, = 0.00025
10 \,/a 0.0032 0032 B, = 0.00166
11 Ay/a 0.0154 0154 By =0.00213
12 A /a 0.0456 0456 By = 0.00241
13 A /a 0.1612 1612 Bs = 0.00085
14 Ay/a 1.43 1430 (1q) Be = 0.00025
15 dshsB/ac 0.0001 0001 a=10
16 dg)g B/ac 0.0009 0009 b=2
17 FOR 0 c =25
TO STATIC 0 d, = ..=dg=
24 CHECK 0 n(0) = 102
25 - 5.0 volts 0500
26 +1.0 volts 0100
27 -0.04c/Ba volt 1325
28 -19.88 volts 1988

AMD -2C (8-57)

Google



Argonne Rational Laboratorp

APPLIED MATHEMATICS DIVISION
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c STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
THE TREAT REACTOR
uNIT e [ oureur REMARKS INTE- 24;:;:: SET PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | 110N
POT 17 -10 1 +10
18 +10 2 -10
19 +10 3 -10
20 +10 4 -10
21 +10 5 -10
22 +10 6 -10
23 +10 7 -10
24 -50 23 +50
AMP 9 -7.0
10 -10
11 =10
12 +50
13 +50
14 +50
15 +50
16 +50
17 +50
18 +5.0
20 Negative
25 Positive
ALL MULTIPLIER CHANNELS = 45 |volts

AMD-2A (8-57)
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5. Graphical Results

$3
320
Lz. Kex
els $1
n il Fig. 9
ER
S o0 Keyx and M =£4n n,
Versus Time
e 5
e O
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IV. A VIBRATING SYSTEM WITH TWO DEGREES OF FREEDOM

1. Problem Description

Problems of vibration must be considered in the design of power
plants using fissionable fuel. Fuel elements, control rods, and structural
supporting members are capable of vibrating; their characteristics must
be analyzed, for vibration problems prove to be of importance to eliminate
concern for the safe operation of the power plant. Good representations
of the true situation usually involve systems with several degrees of
freedom.(IV-1)

A typical vibration problem which will serve as an introduction to
multi-degree-of-freedom systems is shown in Fig. 10. The two masses
m; and m; are suspended vertically by springs k; and k,. The masses are
constrained such that they only move vertically. The displacements x; and
X, taken positive for a downward motion, are measured using static equi-
librium as reference. The elongation of the upper spring is x; and the
elongation of the lower spring is (x, - x;). The restoring force acting on
m, is [-k;x; + ka(x; - x;)], and on m, the restoring force is -k,(x; - x,),
where k; and k, are the spring constants of the respective springs.

Effects due to energy dissipation in the elastic spring, wind friction,
and springs that have appreciable mass have been neglected in the equations
of motion given below.

Fig. 10

Illustration of a Vibrating System
with Two Degrees of Freedom

2. Mathematical Statement of the Problem.

a. Equations
d%x

m; > = -kyx; + ka(xz - %) (1)
dt?

Google



28

dZXz

dt?

m; -ka(xz - x3) (2)

b. Equation Constants

mj: mass (lb) (i = 1, 2)
k;: spring constant (lb force/ft) (i=1,2)

Initial displacement of the springs (feet)

c. Initial Conditions

It is obvious that with the springs displaced a certain distance,
A, the initial conditions will have the following values

Xl(o) = Xz(o) = A

dx;(0)  dx,(0)
dt T odt

d?,(0) d%x,(0) i

dt?

dt?

3. Preparation of Machine Equations:

In transforming to the machine equations, the following relationships
are made. Let

xi' = bx
and (4)
t' = at

Substitution of equations (4) into equations (1) and (2) yields

d?x! k k
L= - : x] + 2 (Xz' - x1) (5)
dt'? a’m, a“m,
d?x, -
X2 L% g - x)) (6)




where

bA

x1(0) = bx,(0)
and

bA

1l

d
[\
—

o
~

|

= bx,(0)

The solution to the equations will vary with m,, m;, k;, k;, and A. In the
solution given here, we consider the following physical constants:

k, =k, 0.2 1b force/ft
m; =m, = 1 lb mass

A =1 ft

4. Analog Circuit Diagram

a. Flow Sheet

—100V

—-100V

(5)—
A4

Fig. 11. Circuit Diagram for the Solution of the Equations
Describing a Vibrating System with Two Degrees
of Freedom
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Argonne Rational Laboratorp

APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

b. POTENTIOMETER SETTINGS

PROBLEM NO.
RAWING NO.
A VIBRATION SYSTEM WITH zATE
TWO DEGREES OF FREEDOM
POTENTIOMETER NoO.[ . CoRREC
VALUE "] SETTING |  SET PARAMETERS
DRAWING | MACHINE VALUE TION
1 bA -50.00 -5000 a=1
2 bA -5000 -5000 b =50
3 k,/a’m, 0.2 2000
4 k,/a’m, 0.2 2000
5 k,/a’m, 0.2 2000
Argonne Aational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER
c. STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
UNIT NUMBER INTE INITIAL
UNIT outp ”: REMARKS GR""(;R CONDI- | SET PARAMETERS
DRAWING | MacHINg | (YOLTS TION
POT 3 10.00
4 0.0
5 0.0
AMP 1 0.0
2 +50.0
3 -50.0
4 0.0
5 -10.0
6 0.0
7 50.0
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5. Graphical Results

10
-
w
¢ o
x'u

-10

Fig. 12
10 Distance Versus Time for a System
with Two Degrees of Freedom

&
wo
x

-1.0

o 20 40 60 80
TIME, SECONDS
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V. TEMPERATURE DISTRIBUTION IN A RADIATING FIN

1. Problem Description

The only economical method for rejecting heat from an outer-space
power plant is by thermal radiation.(V-1) If the working fluid of the power
plant passes through tubes, the additions of extended surfaces to the tubes
in the form of fins reduces the number of tubes required. This reduction
decreases the probability that a meteor will puncture a vital coolant-
carrying passageway. (The puncture of a fin is of lesser concern for the
continued operation of the power plant.) An analysis of the temperature
distribution of these extended surfaces is very important in calculating the
effectiveness (and, indirectly, the safety of the plant) of various fin
geometries.

2. Mathematical Statement of the Problem

In the development of a differential equation for conduction,(V-2)

dq = d/dx (2kWYx%—;f— dx > . (1)

A general heat balance requires this differential equation (1) to be equal
to

dq = 20¢ (T* - TH)dAa (2)

the heat rejected by radiation.

By assuming that the arc length (ds) on the arbitrary surface is
equivalent to dx on the abscissa and assigning Yy equal to a constant thick-
ness for a straight fin geometry, the differential equation for temperature
is

dZ

=

foTd) (3)

o€
e HK (T

A constant heat source will be assumed at one end of the fin and
dT

I = 0 at the other end.(V-3) This will correspond to the fin in Fig. 13.

x=L

M TEMPERATURE

Fig. 13

g

—h—
i /-\ \ J Geometry of Radiation Fin
2

n DA
2H T’d: / \Z\ J and Coolant Tubes
COOLANT/

L
FINS

T

TUBES
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a. Constants and Variables

T = Absolute temperature along the fin

Tg = Absolute temperature of the sink

o] = Stefan-Boltzmann constant

€ = Emissivity

W = Width of the fin in the z-direction

L. = Total length of the fin in the x-direction

q = Heat dissipated

H = Half-thickness of the fin

k = Thermal conductivity of the fin material
Typical values are:

Ts =0°R

o =0.173 x 10°® BTU/(hr)(ft?)(°R*)

e =09

W =1.0ft

L =0.251ft

H =1.250 x 1077 ft

k = 25.0 BTU/(hr)({t)(°R)

b. Initial Conditions

T(0) = 2000°R
The most efficient use of radiator material weight dictates the
arrangement of the finned tubes in a straight bank. The general tempera-

ture distribution, of this arrangement, along the fin is given in Fig. 15.

3. Preparation of Machine Equations

a. Machine Variables and Scale Factors.

ax = x! bT =T

adx = dx' bdT =dT' (5)
a?dx? = dx'? bd’T = 4*T'

a = 102 b =5x 10?2

Google
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b. Scaled Equation

Substituting Equations (5) into Equation (3) we get,

a*T'  ogeT™
dt'? a’b’kH

(Note T4 = 0.)

c. Machine Equation

2my 14
4T 5.03986 (—T—g)
o 10

d. Initial Conditions

T' =bT =100 volts

1

ﬂ = Y volts

dt’

so that

1

4ar’ -0
1

dt t=al

4. Analog Circuit Diagram

a. Flow Sheet

102/C

Fig. 14. Circuit Diagram for Solution of Second-
order, Fourth-degree Differential Equation
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b. POTENTIOMETER SETTINGS

35

PROBLEM NO.
DRAWING NO.
DATE
POTENTIOMETER NO. MATHEMATICAL CORREC
VALUE "] SETTING | SET PARAMETERS
DRAWING | MACHINE VALUE TION
'
1 -Sld—fl— volts *
2 10%0 €/a%b’kH 0.03986 0399
' Variable to produce %{-= 0Oatx ¥ L
Argonne Rational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER
c. STATIC CHECK PROBLEM NO.
DRAWING NO.
DATE
UNIT NUMBER INITIAL
uNIT °°;:": REMARKS INTE: | conpi. | seT PARAMETERS
DRAWING | MACHINE | (YOLTS) GRATOR | 1108
POT 2 -3.99 2 +100
MUH |1 AB -100v
2 AB -100v

AMP 3 +3.99
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5. Graphical Results

2000

1500

1000

TEMPERATURE, °R

500
atra ¥

o 0.05 0.10 0.5 0.20 0.25
FIN LENGTH, FEET

Fig. 15. Temperature Versus Length and dT/dx
Versus Length for a 0.25-ft Fin (K =25.0)

T
*dT/dx was plotted to show when boundary condition g—x-l =0
x=L

is satisfied.
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VI. TEMPERATURE DISTRIBUTION IN AN INFINITE SLAB
CONSIDERING VARIABLE THERMAL PROPERTIES

1. Problem Description

When the thermal properties of various materials are studied,
thermal conductivity, specific heat and density are usually considered as
constants; they are, however, dependent upon temperature.(VI'l) In this
experiment, an insulated zirconium slab is studied. Four cases are
considered:

(1) Diffusivity (k = k/oc) is constant;

L5

F g £, Ti> H

F (Temperature of the region described by the heat
balance);

—~

\Y

~
A
L

—
w
~
&
n

(4) k = F (Average temperature across an interface).

2. Mathematical Statement of the Problem(VI-2)

a. Egquations

Y,

X
7/ /

MmN

Fig. 16. Model of the Infinite Slab Showing
Regions Used for Analysis
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dT, S K
dt ~ pcAx Ax° (Ty-T2)
dT, K

i
T = Z;;Z'(TI‘TZ) -F(Tz'Ts)

"

dT K K
_dt3 = A_XZ‘(T2~T3) _—_zAx (Ta'T4)
dT K K
4 = —2‘<T3'T4) ‘—_Z(T4'T5)
dt Ax A
dT K €0
gt = &2 (Ta~ To) - pogg (T5- T0)*
b. Constants

(1) Constant case

k = thermal conductivity
c = specific heat

p = density

k = k/cp = diffusivity

S = heat source

€ = emissivity

0 = Stephan-Boltzmann constant

1/60 ft

(>4
»
"

(2) As a function of temperature

n

T, °F k(T)
100 0.4198
200 0.4
300 0.38
400 0.364
500 0.352
600 0.336
700 0.322
800 0.309
900 0.298

*Radiation heat loss will be neglected.

Google

11 BTU/(hr)(ft)(°F)
0.066 BTU/(1b)(°F)
0.397 1b/ft3

0.4198 ft?/hr

18.3 BTU/(ft%(sec)



C.

T

Initial Conditions

=TZ=T3=T4=T5=100°F

3. Preparation of Machine Equations

a. Machine Variables

t' = at

T' =bT

s" = AxSb/k

b. Scale Factors

a=1.0

b =0.1

c. Machine Equations

dT} _ KS"  _k_ o

dt' - Dx’a  bxfa (T1-T2)

dTé _ K ' ' K 1 1
Tt - (T1-T)) - Z;‘Z;(Tz-Ta)
dT; - K 1 ! K 1 1
o o (T T - g (T-T
dTy _ _K_ ooy K i o
T Axla (T3-Ty) - Axla (Tq-Ts)
dTs _ _kK ' '
T Bata (T4 TS

d. Initial Conditions

T'=Th=.. Tg=10 volts

S" = 10 volts [S = 18.3 BTU/(ft%)(sec)] for 50 sec
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4. Analog Circuit Diagrams

a. Flow Sheets

Case I - (kK = constant)

.OlK 5"
X% -100
—100 _@_

¥ [>_T"

8[63

HT4-T)
+r’ 3

Fig. 17. Circuit Diagram for
an Infinite Slab with
Thermal Conductivity

= Constant

R-RELAY CIRCUIT
TO INTEGRATOR 5000

+100

- X
+ A =N
0000 '

=F ] 0l _

Fig. 18. Relay Circuit for
the Heat Pulse Used
in Experiment VI
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Case Il - [k = F(Tay)]

V

@
Y
Q-

‘ 17

Fig. 19. Circuit Diagram for an Infinite Slab with Thermal
Conductivity K = F(Taverage)
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Case III - [k = F(Temperature of the Region Described by the
Heat Balance)]

el s

Fig. 20. Circuit Diagram for an Infinite Slab with
Thermal Conductivity « = F(Temperature
of Region Described by the Heat Balance)

Case IV - [k = F(Average Temperature Across an Interface)]

A W f{‘gW ______

Fig. 21. Circuit Diagram for an Infinite Slab with
Thermal Conductivity k = F(Average
Temperature Across an Interface)
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b. POTENTIOMETER SETTINGS
TEMPERATURE VARIATION IN A ONE FACE INSULATED SLAB PROBLEM NO.

CONSIDERING VARIABLE THERMAL PROPERTIES DRAWING NO.
CASE I DATE
POTENTIOMETER NO. MATHEMATICAL CORREC-
DRAWING | MACHINE VALUE VALUE TION SETTING SET PARAMETERS

1 0.01T; 0.1 1000 S =18.3
2 0.01T} 0.1 1000 S" = 10 volts
3 0.01T} 0.1 1000 a=1
4 0.01T, 0.1 1000 b =0.1
5 0.01Tg 0.1 1000 K = %
6 (0.01kS"/Ax?a) |0.042 0420 Ax =1/60
7 k/Ax%a 0.4198 4198 T;(0) = 100°
8 K /B x%a 0.4198 4198
9 Kk /A x%a 0.4198 4198

10 K /A x%a 0.4198 4198

11 K /A x%a 0.4198 4198

12 K /A x%a 0.4198 4198

13 K /B x*a 0.4198 4198

14 « /B x%a 0.4198 4198

JASE 1I

1 0.01T} 0.1 1000
2 0.01T; 0.1 1000
3 0.01T, 0.1 1000
4 0.01T, 0.1 1000
5 0.01T, 0.1 1000
6 S"/100 0.1 1000
7 1.0 1.0 1000 | [(}9)
8 1.0 1.0 2000 | |(b)

AMD-2C (8-57)
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Argonne Rational Laboratorp

APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

b. POTENTIOMETER SETTINGS

TEMPERATURE VARIATION IN A ONE FACE INSULATED SLAB PROBLEM No.

CONSIDERING VARIABLE THERMAL PROPERTIES DRAWING NO.

CASE III - IV b
POTENTIOMETER No.| = CORREC-
DRAWING | MACHINE VALUE VALUE TION SETTING SET PARAMETERS
1 0.01T} 0.1 1000
2 0.01T} 0.1 1000
3 0.01T} 0.1 1000
4 0.01T} 0.1 1000
5 0.01T; 0.1 1000
6 S"/100 0.1 1000

AMD-2C (8-57)

Google



c. STATIC CHECK

Argome Rational Laboratory
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

PROBLEM NO.

45

CASE I DRAWING NO.
DATE
uNIT | oureur REMARKS INTE- mﬁf SET PARAMETERS
DRAWING | MACHINE | (YOLT®) GRATOR | 110N
AMP 6 0.0 1 +10
7 0.0 2 -10
8 0.0 3 | +10
9 0.0 4 -10
POT 6 -4.2 5 +10
7tol4 0.0
CASE 11
AMP 6 -10 1 +10
7 0 2 -10
8 0 3 +10
9 -10 4 -10
10 0 5 +10
11 0
12 -10
13tolé 0
17 10
18 -41.98
DFG +41.98
POT 6 -4.2
7 -1.0
8 -2.0

AMD-2A (8-87)
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Argonne Rational Laboratorp
APPLIED MATHEMATICS DIVISION
ANALOG COMPUTER

c. STATIC CHECK PROBLEM NO.
TEMPERATURE VARIATION IN A ONE FACE INSULATED SLAB DRAWING NoO.
CONSIDERING VARIABLE THERMAL PROPERTIES DATE
CASE III
uNIT HIT PO { oureur REMARKS INTE- 2‘;:1;.- SET PARAMETERS
DRAWING | MACHINE (voLTs) GRATOR TION
AMP 11 0 1 -10.0
12 0 2 +10
13 0 3 -10
14 0 4 +10
15 +41.98 5 -10
DFG | 1to5 +41.98
POT 6 +4.2
CASE IV
AMP 7 +10 1 -10.0
9 +10 2 -10.0
12 +10 3 -10.0
14 +10 4 -10.0
6 0.0 5 -10.0
10 0.0
11 0.0
15 0.0
16to24 0.0
20 +41.98
6 +4.2

AMD-2A (8-87)
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5. Graphical Results

Case I - (kK = constant)

Heat Input = 18.3 BTU/ft’sec for 50 sec

TEMPERATURE,°F
»
o
o

n
o
o

100

[*] 5 10 15 20 25 30 35 40 45 50 55 60 65 70
TIME, SECONDS

Fig. 22. Temperature Distribution for an Infinite Slab - Case I

Case II - [k = F(Tav)]

600
500

400

TEMPERATURE, °F
o
o
(=]

200

100

(o] 5 10 15 20 25 30 35 40 45 50 55 60 65 70
TIME,SECONDS

Fig. 23. Temperature Distribution for an Infinite Slab - Case II
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Case III - [k = F(T of region described by the heat balance)]

600

500

8

TEMPERATURE , °F

(o] 5 10 15 20 25 30 35 40 45 50 55 60 65 70
TIME, SECONDS

Fig. 24. Temperature Distribution for an Infinite Slab - Case III

Case IV - [k = F(Average T across an interface)]

600

TEMPERATURE, °F
ol
o
(=]

35 40 45 50 55 60 65 70
TIME, SECONDS

Fig. 25. Temperature Distribution for an Infinite Slab - Case IV
6. Bibliography
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VII. IODINE-XENON BUILDUP IN A REACTOR

1. Problem Description

The time-dependent behavior of iodine and xenon will be studied
under the following conditions:

(1) constant flux;
(2) step change in flux; and

(3) sinusoidal flux variation.

In addition, the effect of fuel depletion upon the iodine and xenon
concentrations can be studied.

2. Mathematical Statement of the Problem

a. Equations

dI

E: ’YI OfUU¢— )\II

dX

‘I— 'YX OfUU(l)-I-)xII-}xXx- OaXX(j)
dU

Tt - "%u?U

b. Range of Variables

<1.5x 10" n/cmz—sec

o
(A
©

0 =U =6.4x10%° a/crn3
C. Constants

A1 = 0.1033/3600
Ayx = 0.0752/3600

'yI = 0.064
’YX = 0.003
- -18
O,x = 3.0x 10

ofy = 3.98 x 10722
- =22
o,y = 4.72 x 10
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Initial Conditions

0
0

6.4 x 10%°
1.5 x 10

3. Preparation of Machine Equations

a. Machine Variables
t' = at a, = 1/3600
U' = a,U a, = 1074
¢' = a3¢ as = 10-13
I' = a4l ag = 1079
X' = asX ag = 10715
b. Scaled Equations
darr 240y Vg AL
— e U'¢' - 1
dt’ ajazas a)
dX' _ @ %u Vx U'e + Mas ' AxX' o gy
dt' ~  aja;a; a)ay a) a)as
du' _ CaU & U
dt! a)as
c. Machine Equations
] 1 !
ar 0.917 ue'). 0.1033 1"
dt' 102
dX!' u' ¢
— = 0.0430 ¢ + 0.10331I'-0.0752 X' - 1.08
dt 102
d. Initial Voltages
U' = 64 v
¢' = 15 v
I =0

G_O gle

XI¢I

Xl ¢I
10




4. Analog Computer Circuit

5.

Potentiometer Settings

Setting

9170

1033

0430

1033

0752

1080(10)

6400

1500

0017

No. Math. Value Num. Value
as opy Vp 102
21 ki e Sl 0.916992
ajazas
22 A2 0.1033
as ofy Yx 10°
23 70 X 7 0.042984
ayazas
24 as A\p/ajas 0.1033
25 Ax/a1 0.0752
100
26 X 1.08
ayas
1 U'(0) 64.00
2 ®'(0) 15.00
3 Steady state value for I' & X' if experiment
is started from
4 t£0
27 Optional: used if fuel is to burn-up
o,y 102
2au 0.001699
a)as
5 Used to regulate a sinusoidal change
40 in flux (period of 1 day)
41
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