Kurzbeschreibung

Hybrides Rechnersystem
HRS 860
<table>
<thead>
<tr>
<th>Einleitung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eigenschaften der Rechnerarten</td>
<td>3</td>
</tr>
<tr>
<td>Digitalrechner</td>
<td></td>
</tr>
<tr>
<td>Analogrechner</td>
<td>3</td>
</tr>
<tr>
<td>Einsatzgebiete, Anwendungen eines hybriden Rechnersystems</td>
<td>3</td>
</tr>
<tr>
<td>Aufbau - Struktur -</td>
<td></td>
</tr>
<tr>
<td>Hardware - Bestückung des HRS 860</td>
<td></td>
</tr>
<tr>
<td>Systemkomponente Digitalrechner</td>
<td>4</td>
</tr>
<tr>
<td>Eigenschaften</td>
<td></td>
</tr>
<tr>
<td>Peripherie</td>
<td></td>
</tr>
<tr>
<td>Minimalkonfiguration</td>
<td></td>
</tr>
<tr>
<td>Schnittstellen</td>
<td></td>
</tr>
<tr>
<td>Systemkomponente Hybrides Koppelwerk</td>
<td>7</td>
</tr>
<tr>
<td>Magazin B</td>
<td></td>
</tr>
<tr>
<td>Schrank A</td>
<td></td>
</tr>
<tr>
<td>Systemkomponente Analogrechner</td>
<td>8</td>
</tr>
<tr>
<td>Maximalausbau</td>
<td></td>
</tr>
<tr>
<td>Schnittstellen</td>
<td></td>
</tr>
<tr>
<td>Peripherie</td>
<td></td>
</tr>
<tr>
<td>Arbeitsweise des HRS 860</td>
<td>9</td>
</tr>
<tr>
<td>Vorbereitungsphase</td>
<td></td>
</tr>
<tr>
<td>Rechenphase</td>
<td></td>
</tr>
<tr>
<td>Auswertephase</td>
<td></td>
</tr>
<tr>
<td>Software des HRS 860</td>
<td>10</td>
</tr>
<tr>
<td>Betriebssystem BESY 70 des TR 86</td>
<td></td>
</tr>
<tr>
<td>Verkehrprogramm VEPRO</td>
<td>11</td>
</tr>
<tr>
<td>(BESY 70 Erweiterung)</td>
<td></td>
</tr>
<tr>
<td>Programmiersystem</td>
<td>12</td>
</tr>
<tr>
<td>Compiler-Ebene (FORTRAN HYBRID)</td>
<td></td>
</tr>
<tr>
<td>Assembler-Ebene (Codeprozeduren)</td>
<td></td>
</tr>
<tr>
<td>Programmbibliothek</td>
<td>12</td>
</tr>
<tr>
<td>Hybride Standardunterprogramme HYSTUP</td>
<td></td>
</tr>
<tr>
<td>Erweiterte Einwortnumerik ERENUM</td>
<td></td>
</tr>
<tr>
<td>Unterprogramme für VEPRO-Benutzerkommandos</td>
<td></td>
</tr>
<tr>
<td>Dienstprogramme</td>
<td>13</td>
</tr>
<tr>
<td>Anlagenentstprogramm TST860</td>
<td></td>
</tr>
<tr>
<td>Rechenschaltungsprüfungprogramm VAMPIR</td>
<td></td>
</tr>
<tr>
<td>Technische Daten des HRS 860</td>
<td>14</td>
</tr>
<tr>
<td>Vertriebsanschriften</td>
<td>15</td>
</tr>
</tbody>
</table>
In einem hybriden Rechnersystem arbeiten Digital- und Analogrechner gemeinsam an der Lösung einer Aufgabe. Das Prinzip, der Aufbau, die Programmierung und die Arbeitsweise dieser Rechner unterscheiden sich wesentlich voneinander.

Digitalechner
- Der Digitalrechner arbeitet sequentiell; d. h. alle Rechenoperationen müssen in eine Folge einzelner arithmetischer Schritte aufgegliedert werden.
- Die Speichermöglichkeit für Programme und Daten ist nahezu unbegrenzt.
- Es können logische Variablen entsprechend logischen Anweisungen beliebiger Komplexität verarbeitet werden.
- Der Rechner verkehrt mit einer Vielzahl von Standardperipheriegeräten.
Bei Prozeßrechnern:
- Mit Hilfe eines Programmunterbrechungswerkes sind schnelle Reaktionen auf externe Ereignisse möglich.
- Für externe Steueraufgaben werden binäre Signale erzeugt.

Analogrechner
- Bei der Programmierung wird mit Hilfe von elektrischen Rechenelementen ein Modell entsprechend der zu berechnenden mathematischen Beziehung aufgebaut.
- Zu den erwähnten Rechenelementen gehört der Integrierer. Dies ermöglicht die Bearbeitung komplizierter Differentialgleichungssysteme.
- Die parallele Datenverarbeitung ermöglicht das gleichzeitige Verfolgen des Zeitverlaufs aller im Modell vorkommenden Größen bei sehr hoher Rechengeschwindigkeit (Echtzeit-Simulation).
- Durch einfache Änderung der Parameter während des Rechenaufwandes aufgrund der beobachteten Zwischenergebnisse ist eine gute und schnelle Mensch-Maschine-Kommunikation gegeben.

Zu den Einsatzgebieten gehören:
- Biologie, Medizin
- Pharmazie
- Chemie, Verfahrenstechnik
- Mathematik
- Meß- und Regelungstechnik
- Mechanik, Kraftfahrzeugtechnik
- Luft- und Raumfahrt
- Kerntechnik
- Elektrotechnik
- Volkswirtschaft

mit den typischen Aufgaben:
- Optimierungen
- Integration in mehreren Dimensionen
- Lösung von Differentialgleichungssystemen
- Simulationen
- Lösung von Randwertaufgaben
- Korrelationen
AEG-TELEFUNKEN stellt mit dieser Schrift das Hybride Rechnersystem HRS 860 vor.

Die drei Systemkomponenten
• Digitalrechner TR 86
• Hybrides Koppelwerk HKW 860
• Hybrider Präzisionsanalogrechner RA 770 (oder RA 800 H)

stammen aus eigener Entwicklung und Fertigung und konnten deshalb optimal aufeinander abgestimmt werden.
Folgende **wesentliche Eigenschaften** des Digitalrechners TR 86 machen ihn für den Einsatz in hybriden Rechnersystemen besonders geeignet:

- Wortlänge 24 Bits
- Verarbeitung wortweise parallel
- Hohe Rechengeschwindigkeit
- Kernspeicherkapazität bis zu 64 K Worte
- Zykluszeit von 0,9 μs
- Speicherzugriffszelt von 0,3 μs
- Rechnerkernkanal mit max. 255 Geräteadressen
- Autonome Standardkanalwerke
- Sonderkanalwerke mit Direktzugriff zum Kernspeicher
 (z. B. Hybridkanal)
- Prioritätsgesteuertes Programmunterbrechungswerk.

Peripheriegeräte

Der TR 86 ist für den standardmäßigen Anschluß einer Vielzahl von Peripheriegeräte-Arten vorgesehen. Die gebräuchlichsten im Zusammenhang mit einem Hybriden Rechnersystem HRS 860 sind:

- Lochstreifenleser (z. B. 500 Sprossen/s)
- Lochstreifenstanzer (z. B. 75 Sprossen/s)
- Trommelspeicher (Speicherkapazität 2 · 10⁶ Oktaden, mittlere Zugriffszeit 17,2 ms, Transfersgeschwindigkeit 291 000 Oktaden/s)
- Lochkartenleser (z. B. 600 Karten/min)
- Schnelldrucker (z. B. 160 Druckstellen/Zeile, ≈ 1000 Zeilen/min)
- Sichtgerät (512 x 512 Punkte) erweiterbar mit Tastatur, Vektorgenerator, Zeichengeneratoren, Flackergenerator, Rollkugel usw.

Minimalkonfiguration für das Hybride Rechnersystem HRS 860

- Rechnerbasis mit Bedienplatz
- 32 K Worte Kernspeicher
- Programmunterbrechungswerk mit 28 Ebenen
- Vorrangwerk für die Kanalwerke
- Hybridkanal
- Lochstreifenperipherie
- Trommelspeicher mit Standardkanalwerk.

Schnittstellen des TR 86 zum Hybriden Koppelwerk

Über den Rechnerkernkanal werden folgende Aufgaben abgewickelt:

- Steuerdatentransfer mit den Registern des Analogrechners und des Koppelwerkes
- Auslösosen von Zustandsänderungen
- Kontrollieren von Einstellvorgängen
- Steuerung des Hybridkanals
- Abfragen und Verarbeiten von Zuständen der Signalleitungen.

- Zykluszeitende
- Analog/Digital-Umsetzer übersteuert
- Ende einer Datenübertragung
 bzw. des Analogrechners zugeordnet
- Analogrechner übersteuert
- Analogrechner beginnt zu rechnen
- Analogrechner hält.
Blockschaltbild des Hybriden Rechnersystems HRS 860
Die Kopplung des TR 86 mit dem Analogrechner übernimmt das HKW 860. Seine Aufgabe ist, den Austausch von Rechendaten und Steuerinformationen zwischen den Rechnern vorzunehmen. Das HKW 860 besteht aus zwei Einheiten:

dem Schrank A
und dem Magazin B

Magazin B HMB 860
Es ist räumlich in einem Schrank des TR 86 untergebracht und erfüllt folgende Aufgaben:

- Erweitern des EA-Werks um einen Hybridkanal, der bezüglich des Speichervorgriffs die höchste Priorität hat, über ein eigenes Adressenwerk verfügt und mit direktem Speichervorgriff Daten blockweise oder einzelwertweise übertragen kann
- Zwischenspeichern von Informationen zur Entlastung des Rechnerkerns
- Steuern der Verteilung dieser Informationen
- Anpassen der internen Pegel des TR 86 an die Pegel des HKW 860 und RA 770 bzw. RA 800 H für Ein/Ausgabesignale.

Schrank A HKA 900
Er wurde in Bezug auf die Eigenschaften des Analogrechners konzipiert und steht neben dem Analogrechner, um die analogen Datenleitungen möglichst kurz zu halten. Zu seinen Aufgaben gehören:

- Speicherung von Bitkombinationen in Steuerprogramm-Registern für die Anwahl eines der Standardrechenprogramme des Analogrechners, sowie für die Selektion der Analogrechner-Betriebsarten.
- Weitergabe der Adresse eines im Analogrechner einwählbaren Rechenelements in das Anwahlfeld-Register des Digital-Bediengerätes
- Zeitliche Koordination der Abläufe in Digital- und Analogrechner (Zykluszeit)
- Speicherung von digitalen Steuerinformationen in Parallel- und Ausgaberegistern
- Steuerung der dynamischen Ausgabe von binärer Information an den Digitalzugang. Zusammensetzung bestimmter Anlagenzustände (Abfrageleitungen)
- Weitergabe von Zustandsänderungen des Koppelwerkes und des Analogrechners an den Digitalrechner über Unterbrechungsleitungen
- Erweiterung der Fehlermeldungen des TR 86 für spezielle Fehler möglichkeiten im Hybriddsystem
- Anwahlfeld des benutzten Datenkanals für die Übertragung von Rechendaten in das Leitungs- und AD-Richtung mit dem Leitungsadress-Register.

Außerdem enthält der Schrank A folgende Komponenten für die Datenumsetzung:

in DA-Richtung

DA-Umsetzer und Glättungseinheiten (maximale Anzahl gemäß Typ des Koppelwerkes).

- Die DA-Umsetzer können in die Lage versetzt werden, den zu wandelnden Digitalwert mit einem analogen Analogwert zu multiplizieren.

in AD-Richtung

je nach Ausbau 16 oder 32 Datenkanäle, die über einen Multiplexer auf einen schnellen AD-Umsetzer geschaltet werden. Über einen dieser Kanäle können außerdem die Ausgangswerte aller anwählbaren analogen Rechenwerken in den Digitalrechner übertragen werden.

Es stehen fünf verschiedene Versionen des Schrankes A zur Verfügung, die sich im wesentlichen in der jeweils maximalen Anzahl der einsetzbaren Komponenten unterscheiden.
HKA 900–1
10 DA-Umsetzer
10 Glättungseinheiten
16 AD-Kanäle

HKA 900–2
20 DA-Umsetzer
20 Glättungseinheiten
32 AD-Kanäle

HKA 900–3
30 DA-Umsetzer
10 Glättungseinheiten
32 AD-Kanäle

HKA 900–4
20 doppelt gepufferter DA-Umsetzer
18 doppelt gepufferter Glättungseinheiten
32 AD-Kanäle mit je einem Abtast- und Halteverstärker

HKA 900–5
28 doppelt gepufferter DA-Umsetzer
10 doppelt gepufferter Glättungseinheiten
32 AD-Kanäle mit je einem Abtast- und Halteverstärker

Teil des Schrankes A ist auch das Bedienfeld, über das die Trennung der Verbindung zwischen Koppelwerk und Digitalrechner ermöglicht wird; wenn rein digital bzw. rein analog gerechnet werden soll. Im Wartungsfalle ist über das Bedienfeld die Simulation des Digitalrechners möglich. Dadurch wird eine Erleichterung bei der Fehlersuche erreicht, und der TR 65 kann während dieser Zeit für andere Aufgaben eingesetzt werden.

Im Hybridrechnersystem HRS 860 können als Analogrechner der RA 770 oder RA 800 H (jeweils mit Nebenrechnern) verwendet werden. Beide sind flexibel ausbaubare 10 V-Rechner der Genauigkeitsklasse 10⁻⁴.

Der Maximalausbau des Grundgerätes RA 770 umfaßt folgende Rechen elemente:

- 142 Rechenverstärker, davon 30 Integrerer
- 84 Koeffizientenpotentiometer, davon 68 Servopotentiometer
- 10 Komparatorverstärker
- 20 Komparatorschalter
- 2 Einschübe Elektronische Resolver
- 8 variable Funktionsgeber mit je 20 Strecken zwischen festen Knickpunkten
- 30 freie Eingangsnetzwerke
- 89 Funktionsplätze für nichtlineare Netzwerke, die in weitem Rahmen frei gewählt werden können:
 - Parabelmultiplizierer
 - Quadratfunktionen
 - Universal-Knickfunktionen (z. B. als Begrenzer beschaltbar)
 - verschiedene Winkelfunktionen
 - Logarithmenfunktionen
 - Rauschgeneratoren
 - variable Funktionsgeber (mit verschiebbaren Knickpunkten).

Der Elementenumfang läßt sich durch die Verwendung von Nebenrechnern versechsfachen.
Schnittstellen des RA 770 zum Hybriden Koppelwerk HKW 860

- Am Analog-Programmierfeld des RA 770 sind die Ein- und Ausgänge für den Datentransfer in AD- bzw. DA-Richtung zugänglich.

Peripherie

Zu den einsetzbaren Standardperipheriegeräten des Analogrechners gehören:

- Digitalvoltmeter
- Zweistrahl-Speicheroszillograph
- XY-Schreiber
- Mehrkanalschreiber
- Digitaldrucker
- Laufzeitgerät

Aufgrund der bekannten Eigenschaften der Rechner übernimmt der Digitalrechner die System-Führung. Im Ablauf eines Hybridprogramms lassen sich normalerweise drei Phasen unterscheiden:

- In der Vorbereitungsphase befindet sich der Analogrechner im stationären Zustand und nimmt Anweisungen und Werte vom Digitalrechner entgegen wie z. B. Einstellung von Betriebszuständen, Parametern und Anfangswerten.

- In der Auswertephase befindet sich der Analogrechner wieder im stationären Zustand. Es folgt die Abfrage des Gesamztzustandes durch den Digitalrechner. Anschließend wird die neue Rechenphase vorbereitet oder der Abschluß des Hybridprogramms vorgenommen.

Bei der Entwicklung von Hard- und Software über das Hybride Rechner-System HRS 860 wurde außerdem die Möglichkeit des allgemeinen Einsatzes in einem System mit schnellen externen Prozessen anstelle des Analogrechners berücksichtigt.
Die Software für das Hybride Rechnersystem HRS 860 von AEG-TELEFUNKEN basiert auf der Standard-Grundsoftware des TR 88 erweitert um hybridspezifische Softwareteile. Die folgende Übersicht zeigt ihren prinzipiellen Aufbau:

Betriebssystem

<table>
<thead>
<tr>
<th>Betriebssystem für Stapelverarbeitung</th>
<th>BESY 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>mit Verkehrsprogramm</td>
<td>VEPRO</td>
</tr>
</tbody>
</table>

Übersetzer

| FORTRAN IV HYBRIDVERSION | Assembler ASTR86-FL | Rechenschaltungsprüfprogramm VAMPIR | Anlagentestprogramm TST860 |

Bibliotheken

| Erweiterte Einwortnumerik ERENUM | Hybride Standardunterprogramme HYSTUP |

Betriebssystem BESY 70 des TR 86

BESY 70 ist ein plattenorientiertes (TSP 300) Betriebssystem für Stapelverarbeitung. Mit BESY 70 können neben den üblichen E/A-Geräten, wie Lochstreifen- und Lochkartengeräten, Schnelldrucker, Magnetbandgeräten und Wechselplattenspeicher, auch Sichtgeräte (SIG 100), Plotter und weitere Fernschreiber bedient werden.

BESY 70 bietet zwei Möglichkeiten der Plattendateiverwaltung an: eine einfache, speziell für Bibliotheksdateien gedacht, und eine komfortable (mit mehreren Komfortstufen) für allgemeine Datenhaltung auf der Platte.

Die Systemdienste dafür können entweder dynamisch oder durch Kommandos aktiviert werden.

Weitere Systemdienste sind:
- Binden und Laden von System- und Anwendermoduln
- Starten von Programmen
- DUMP-Programm zum Ausdrucken von Kernspeicherbereichen
- Programm für Änderungen im Kernspeicher (Testhilfe)
- Zeitverwaltung und Weckdienste

Die Programm bibliothek auf der Platte enthält weitere Dienstprogramme; die wichtigsten sind:
- QUELAM — Verwaltung von Quellprogrammen auf Magnetbändern
- ASTR86 — Assembler für TAS 86-Programme
- BANDAS — Band-Assembler für TAS 86-Programme
- MAKROP — Makrogenerator
- BNDPLA — Verkehr mit Magnetbanddateien
- TESUEB — Überwachung von Objektdateien während ihrer Laufzeit
- GRAFSY — Graphiksystem (Plotter, Sichtgerät)
- GLEANU — Gleitpunkarthmetik für TAS 86-Programme

Unter Regie von BESY 70 laufen folgende Compiler:
- FORTRAN
- FORTRAN HYBRIDVERSION
- ALGOL
- COBOL
Verkehrsprogramm VEPRO

Zur Anpassung an die speziellen Bedürfnisse eines Hybridsystems wurde BESY 70 um das Verkehrsprogramm VEPRO erweitert. VEPRO besteht aus mehreren Systemteilen, die teils resident im Kernspeicher liegen, teils auf dem Trommelspeicher untergebracht sind und von dort bei Bedarf in den Überlagerungsbereich des Betriebssystems geladen werden. Die residenten Teile von VEPRO übernehmen folgende zusätzliche Aufgaben:

- Zentrale Rechnerkernkanal-Alarmabhandlung für die vom Hybridsystem benutzten Rechnerkernkanäle
- Automatische Normierung der für das Hybridsystem reservierten Unterbrechungsebenen 13-26 bei Programm- oder Jobende, bzw. bei Hardware-Normierung des TR 86. Dies schließt ein:
 - Anschluß von Leerroulten (speziell auf das Programmunterbrechungswerk PUW 34 zugeschnitten)
 - Sperren aller Hybrid-Ebenen, die nicht vom BESY 70 verwaltet werden
- Normierung des Protokollregisters des PUW 34
- Anforderung und Entschlüsselung von neuen Parametern bei fehlerhaft versorgten Programmen der erweiterten Einwortnumerik (ERENUM) und der hybriden Standardunterprogramme (HYSTUP) während des Objektlauzes.
- Bereitstellung von Routinen zur Erleichterung der Interruptverwaltung der Hybrid-Ebenen durch die entsprechenden hybriden Standardunterprogramme.
- Bereitstellung von Routinen zur Aktivierung der eigentlichen VEPRO-Dienste (Kommandos, mit denen z. B. von einer Konsole aus direkt alle Funktionen des Hybridsystems ausgelöst werden können; siehe nächstes Kapitel)

Der nichtresidente Teil von VEPRO enthält den Kommandoentschlüssler und die Kommandoprogramme für die oben genannten Kommandos. Für den Einsatz der ERENUM-Unterprogramme an Anlagen ohne Programmunterbrechungswerk PUW 34 steht der residente Teil von VEPRO in modifizierter Form zur Verfügung, da ERENUM grundsätzlich das Vorhandensein eines BESY 70 mit VEPRO voraussetzt.

Dienstleistungen des Verkehrsprogramms VEPRO

Beispiele für Beeinflussungsmöglichkeiten durch Standard-Kommandos sind:

- Aufschalten einer oder mehrerer Störrspannungen über DA-Umsetzer
- Beeinflussung einer Schaltung auf dem Digitalzusatz über die Parallelausgabe-Register
- Veränderung der Zykluszeit (Abtastzeit-Intervalle)
- Auslesen von Rechenelement-Werten
- Zustandsabfrage der Abfrageleitungen
- Sperren oder Freigeben von Programmunterbrechungsebenen

Benutzerkommandos ermöglichen z. B.:

- Eingabe neuer Parameter in das Digitalprogramm
- Aktivierung zusätzlicher Programmmodule oder Tillegung
- Ausdrucken von Ergebnislisten
- Zuführung neuer Datensätze usw.
Wenn VEPRO als autonome Programm gestartet wird, ist es möglich, sehr schnell die einzelnen Komponenten des Hybridsystems auf ihre Funktionsfähigkeit zu prüfen, oder vergessene Voreinstellungen für ein anschließend zu startendes Hybridprogramm nachzuholen. Durch ein einfaches Kommando ist es möglich, ein beliebiges Unterprogramm (z. B. Testroutine) an eine der Unterbrechungsebenen 13–28 anzuschließen.

Compiler-Ebene (FORTRAN-HYBRID)

Der FORTRAN-HYBRID-Compiler bietet die Möglichkeit, Hybridprogramme ausschließlich in FORTRAN zu schreiben. Gegenüber der Normalversion des FORTRAN-Compilers ist die Hybriddversion deshalb mit folgenden Erweiterungen ausgestattet, wobei besonderer Wert auf die Optimierung der Objektlaufzeit gelegt wurde:

- Zwei zusätzliche Einwort-Zahllentypen (FRACTIONAL u. FLOATSHORT)
- Konstanten vom gleichen Typ
- Operationen und Standardfunktionen für FRACTIONAL- und FLOATSHORT-Zahlen (vgl. ERENUM)
- INTEGER mit und ohne Zeichenkonstanten (zur Darstellung v. Bitmustern)
- Funktionen für Manipulation von Bitmustern (vgl. ERENUM)
- Direkter Zugriff auf die HYSTUP-Unterprogramme durch CALL- Aufruf oder durch Aufruf als Standardfunktion
- Direkter Aussprung aus SUBROUTINES in das übergeordnete Programm durch GOTO+1
- Mehrfachzuladung von Standardfunktionen (inklusive HYSTUP- und ERENUM-Unterprogramme), für die Programmierung von Unterbrechungs Routinen gesteuert durch die Anweisung SPECIAL i (erheblicher Zeitgewinn gegenüber reentrant Programmen)

Der FORTRAN-HYBRID-Compiler enthält mit Ausnahme des Zahllentyps „Doppelt-genau-komplex“ alle Sprachelemente des Normalcompilers.

Assembler-Ebene (Codeprozeduren)

Der für die Übersetzung von Codeprozeduren vom Compiler benutzte Assembler ASTR86-FL ist gegenüber dem Normalassembler um ein Sprachelement für FLOTSHORT-Konstanten erweitert.

Für die Erstellung von Hybridprogrammen steht eine umfangreiche Programm bibliothek zur Verfügung, die die Programmierung wesentlich erleichtert. Diese Bibliothek enthält als Erweiterung des normalen FORTRAN-Systems die drei Programm pakete HYSTUP, ERENUM und VEPRO Benutzerkommandos.

Hybride Standardunterprogramme HYSTUP

Mit den HYSTUP-Programmen können die verschiedenen Elemente und Funktionen des Koppelwerkes sowie des Analogerreichers oder eines stattdessen angeschlossenen Prozesses angesprochen, ausgelöst oder abgefragt werden.

Es gibt Unterprogramme für:

- Datenübertragung über AD- und DA-Kanäle (einzeln, gleichzeitige oder Blockübertragung, synchronisiert oder nicht synchronisiert, Einstellung der verschiedenen Betriebsarten der DA-Umsetzer)
- Ein- und Ausgabe von digitalen Zustands- bzw. Steuerinformationen
- Auswahl und Messen der Ausgangsspannungen von Analogerrechner- elementen
- Einstellen von Servopotentiotometern
- Einstellen von Programm- und Betriebsarten des Analogerreichers
- Steuern von Rechenabläufen im hybriden Rechnersystem
Zeitliche Steuerung periodischer Vorgänge (Abtastvorgänge, Rechenabläufe) durch Zykluszeit-Register und -Zähler
Anschluß von Benutzer-Unterbrechungsprogrammen an die Unterbrechungszeiten 13–28 mit extrem kurzen Reaktionszeiten auf Unterbrechungssignale
Steuerung und Abfrage des Programmunterbrechungswerkens PUW 34
Dynamische Fehlerbehandlung
Graphische Ausgabe digitaler Information (Achselkreuz, Kurven, Beschreibung) über das HKW 860 an den analog angesteuerten XY-Schreiber.

Erweiterte Einwortnumerik ERENUM
Die erweiterte Einwortnumerik entspricht den Anforderungen der Realzeitprogrammierung und ermöglicht kurze Programmlaufzeiten bei geringem Speicherbedarf und einer Genauigkeit, die den Anforderungen eines Hybridssystems und weiten Bereichen der Meßwertaufarbeitung angepaßt ist.
ERENUM enthält Standardunterprogramme für die Zahlenarten FLOATSHORT (Gleitpunktzahl), FRACTIONAL (Festpunktzahl, echter Bruch) und INTEGER • 2. Für FLOATSHORT bestehen Standardunterprogramme im gleichen Umfang wie beim Zahlenart REAL, jedoch ohne Exponentiation, für FRACTIONAL in einer geeigneten Auswahl.
Die Unterprogramme sind in folgenden 6 Gruppen zusammengefaßt:
• Arithmetische Operationen
• Trigonometrische Operationen
• Vergleichsoperationen
• Binäreoperationen für die Bearbeitung von Bitmustern (INTEGER • 2)
• Konvertieroperationen für die Umwandlung von Zahlen in andere Zahlenarten
• Dynamische Fehlerbehandlung bei arithmetischen Fehlern

Unterprogramme für VEPRO-Benutzerkommandos
Für die Programmierung von VEPRO-Benutzerkommandos und Weiterverarbeitung der per Kommando eingegebenen Parameter stehen eine Reihe von Unterprogrammen zur Verfügung, die sich in folgende Gruppen einteilen lassen:
• Erstellung und Anmeldung einer Kommandoliste
• Abarbeitung des Kommandopuffers
• Abprüfung von eingegebenen Parametern nach Zahlenart und Größe; Übergabe an das Arbeitsprogramm
• Ausgabe von standardisierten Fehlermeldungen
• Weitere Hilfsroutinen

Anlagentestprogramm TST860

Rechenschaltungsprüungsprogramm VAMPIR
Das Dienstprogramm VAMPIR besteht aus den Programmenteilen SAVE und SETUP.
• SETUP verkürzt durch Einstellung der Potentiometer und Vergleich der Lochstreifenwerte mit dem aktuellen Analogrechnerzustand die Rüstzeit eines bereits erprobten Analogprogramms erheblich.
Systemkomponente Hybrides Koppelwerk HKW 860

- Digital-Analog-Umsetzung
 (maximale Anzahl der Kanäle siehe Seite 8)
 - DA-Umsetzer
 Stellenzahl (einschl. Vorzeichen) 14 Bits
 Umsetzzeit je Wort 5 \mu s typ. (max. 10 \mu s)
 Umsetzgenauigkeit ± 0,01 % ± 1/2 LSB
 - Glättungseinheiten
 Betriebsarten: Umsetzen
 Multiplizieren
 Interpolieren/Extrapolieren
 (grob und fein)
 Auswahl der Betriebsarten 2 Bits
 Zusatzbits für Interpolation 8 Bits

Beispiel: bei blockweisen Datentransfer beträgt die Folgefrequenz bei einem Umsetzfehler von \text{10^{-4}} 550 000 Worte (24 Bits) pro Sekunde.

- Analog-Digital-Umsetzung
 (maximale Anzahl der Kanäle siehe Seite 8)
 - AD-Umsetzer
 Stellenzahl (einschl. Vorzeichen) 14 Bits
 Umsetzzeit je Wort 5 \mu s
 Umsetzgenauigkeit bezogen auf ± 10 V ± 0,01 % ± 1/2 LSB
 - Multiplexer
 Statischer Fehler 10^{-4}
 Einstellzeit auf 10^{-4} 10 \mu s typ.
 Haltefehler über 50 \mu s 1 mV

Beispiel: bei blockweisen Datentransfer beträgt die Folgefrequenz bei einem Umsetzfehler von \text{10^{-4}} 100 000 Worte (24 Bits) pro Sekunde.

- 1 Zykluszeit-Zähler mit -Register
 (programmierbar)
- 16 Unterbrechungsleitungen
 (davon 10 am Digital-Programmierfeld frei verfügbar)
- 24 Abfrageleitungen
 (davon 15 am Digital-Programmierfeld frei verfügbar)

Schrank A HKA 900
- Stromversorgung
 220 V ± 10 \%
 50 Hz ± 2 Hz
 maximal 2 kVA
- Gewicht
 220 kg
- Abmessungen
 Höhe 1348 mm
 Breite 690 mm
 Tiefe 630 mm
<table>
<thead>
<tr>
<th>Städte</th>
<th>Geschäftsstelle</th>
<th>Postleitzahl</th>
<th>Straße</th>
<th>Telefon</th>
<th>Telex</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERLIN</td>
<td>Geschäftsstelle Nachrichten- und Datentechnik</td>
<td>1 Berlin 10</td>
<td>Ernst-Reuter-Platz 7</td>
<td>0311/3403-1</td>
<td>181 567</td>
</tr>
<tr>
<td>DÜSSELDORF</td>
<td>Geschäftsstelle Nachrichten- und Datentechnik</td>
<td>4 DÜSSELDORF</td>
<td>Grafenberger Allee 136</td>
<td>0211/6708-1</td>
<td>586 740</td>
</tr>
<tr>
<td>FRANKFURT</td>
<td>Geschäftsstelle Nachrichten- und Datentechnik</td>
<td>6320 FRANKFURT 83</td>
<td>Mainzer Landstraße 349</td>
<td>0611/730146</td>
<td>414 477</td>
</tr>
<tr>
<td>HAMBURG</td>
<td>Geschäftsstelle Nachrichten- und Datentechnik</td>
<td>2 HAMBURG 36</td>
<td>Stadthausbrücke 9</td>
<td>0411/3498-1</td>
<td>211 609</td>
</tr>
<tr>
<td>MÜNCHEN</td>
<td>Geschäftsstelle Nachrichten- und Datentechnik</td>
<td>8 MÜNCHEN 19</td>
<td>Arnulfstraße 199</td>
<td>0811/1305-1</td>
<td>523 916</td>
</tr>
<tr>
<td>STUTTGART</td>
<td>Geschäftsstelle Nachrichten- und Datentechnik</td>
<td>7 STUTTGART 80</td>
<td>Industriestraße 62</td>
<td>0711/733071-75</td>
<td>7255 607</td>
</tr>
</tbody>
</table>