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Abstract:  

This paper contains the result of research into analog computation, referring to the 

computational method that involves constructing an electronic system that is analogous to the 

system in the problem at hand, utilizing analog voltages to represent the quantities in this 

problem, and operating on these quantities with operational amplifier circuits that can compute 

summation, multiplication (by either a constant of another value set by a second voltage), and 

integration with respect to time. It should be noticed that differences, division, and even arbitrary 

functions can be implemented or approximated where necessary under this framework. This 

paper constructs a system based on the above criteria and documents its strengths and 

weaknesses as a computational paradigm. Finally, conclusions are drawn regarding the viability 

of the construction of a large scale analog computer.  

Introduction: Basic Concepts of Analog Computation 

As introduced in ECE 2040 or equivalent courses, Kirchhoff’s laws can be utilized to 

analyze circuits through node voltage analysis or mesh current analysis [1]. This theory can be 

utilized with operational amplifier integrated circuits to construct useful electronic circuits that 

can model certain operations and mathematical problems. In fact, analog circuits can be 

constructed that model most mathematical operations, including multiplication, addition, and 

integration. These three circuits were critical to the design of an analog computer, and thus they 

are detailed below.  

The summation amplifier 

The summation amplifier, or summing amplifier, takes a sum of the voltages at its inputs 

and scales the result. This works rather simply: essentially an operational amplifier has two 

nodes as its inputs. The third pin, or output of the amplifier “does whatever is necessary” to 

make the voltage on the two input nodes equal [2] (or, alternately, to make the voltage difference 

between the two pins equal to zero [1]). This fact, with KCL and KVL, constitutes the basis of 

the technique of analyzing operational amplifiers – at least when we assume the device is an 

“ideal operational amp”. In this instance, such an assumption is valid to a first order. 

Furthermore, it should be noticed that an ideal operational amplifier has inputs that have an 

infinite input resistance and an output that has a thevenin equivalent resistance that is exactly 

zero. Real devices are unable to reach this, but for the sake of this project it may be assumed that 

these conditions hold.  
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The schematic of a summation amplifier is the following diagram.  
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=  𝐼𝐼𝑛𝑡𝑜 𝐽𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐼𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑅𝑓 Eq.1. 

Thus, the voltage at the inverting input must be held at ground potential. This implies that 

the output voltage of this system obeys the equation below, Eq.2.  

0 − 𝑅𝑓(
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𝑅1
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𝑉2

𝑅2
+

𝑉3

𝑅3
+ ⋯ +

𝑉𝑛

𝑅𝑛
) = −𝑅𝑓(𝐼𝐼𝑛𝑡𝑜 𝐽𝑢𝑛𝑐𝑡𝑖𝑜𝑛) =  −𝑅𝑓(𝐼𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑅𝑓) =  𝑉𝑜𝑢𝑡 Eq.2. 

Since the output voltage term, Vout, remains at a potential that is below ground potential 

(zero volts), it must be set such that the above equations hold. In this way, the output voltage of 

this circuit is established such that the output is the negated summation of the voltages on the 

inputs, scaled by a constant factor that is proportional to Rf. Thus, an amplifier that multiplies by 

a constant can be created, by using this circuit with only a single input.  

It should be noticed that the reason that the “+” input (noninverting input) is connected to 

ground is not arbitrary. The noninverting summation amplifier is more complicated and is likely 

to suffer from low input impedance. This limits the utility of this circuit to the extent that it is not 

considered or utilized in this project. Also, since the “differentiator” circuit is prone to the 

generation of noise and other adverse effects, it is not included for the same reason [1,2].  

If analog electronics could only perform addition and multiplication, there would not be 

any reason to write this paper. Digital electronics can perform such operations with mush more 

versatility and speed. The fascinating thing is that this is not the case, however. Analog 

electronic circuits can be constructed to model differential equations, using a circuit that can take 

the time integral of its inputs. This circuit, perhaps the most important one in this paper, makes 

integration almost a trivial operation for an analog computer. In fact, it only takes a single 

resistor, capacitor, and operational amplifier to perform time integration [1]. This fact, along 

with the realization that many useful dynamic systems are modeled by differential equations, is 

what lead me to work on analog computing and this project. Thus, we cover the integrator circuit 

on the following page.  

 

Summation Amplifier – Fig.1. 

The operational amplifier with its two 

inputs is the bottom right triangular shape.  The 

“-“ input is the “inverting” input and the “+” 

input is the “noninverting” input, respectively. 

The circuit’s output makes the inputs have an 

equal voltage. Thus the “-“ input is at ground 

potential [1]. From these details, its behavior 

follows the equations below (Eq.1. and Eq.2.).  
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The Integrator 

 

Utilizing the assumptions of the “ideal operational amplifier”, we may analyze the 

integrator circuit below. Its behavior is then governed by the equations that follow.  

 

  

 

 

 

 

 

 

𝐶
𝑑𝑉

𝑑𝑡
= 𝐼𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟    Eq.3. I-V Equation – Capacitor (for reference) 

The circuit above must maintain the inverting input (the “-“ on the operational amplifier) 

at ground potential, and the only way it can maintain this state is by changing the output of the 

operational amplifier [1]. This implies the following equations must apply: 

𝐼𝑖𝑛𝑡𝑜 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 (𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑅) =  
𝑉𝑖𝑛

𝑅
=  −𝐼𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟  Eq.4. Series RC Circuit in Integrator 

This equation holds because the resistor and capacitor are in the circuit, and are 

connected in series. Since the inputs of the operational amplifier do not influence the circuit, the 

current must be equal through a series circuit. Hence, we may utilize Eq.3. and Eq.4. to find the 

value of the output voltage, Vout.  

𝑉𝑖𝑛

𝑅
=  𝐼𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟/𝑟𝑒𝑠𝑖𝑠𝑡𝑜𝑟 = −𝐶

𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
  Eq.5. Substitution of Eq.3 and Eq.4 

From the above equation, we may divide by C and then integrate to find the resulting 

output of the output voltage for the above system. This leads to the sixth and final equation. 

− ∫
𝑉𝑖𝑛(𝑡)

𝑅𝐶

𝑡𝑠𝑡𝑜𝑝

𝑡𝑠𝑡𝑎𝑟𝑡
 𝑑𝑡 + 𝑉𝑐 =  𝑉𝑜𝑢𝑡   Eq.6. Integrator, equation for Vout 

The above equation states the output voltage explicitly, namely it is the time integral of 

the input voltage from the time when the system was set up to the time of observation. In 

addition, an arbitrary constant - equal to the voltage on the capacitor when the integration began 

at tstart, is added to the output as a “constant of integration”. Thus, a simple three element circuit 

can perform a rather difficult operation [1]. It should be realized that this circuit is very nearly 

analogous to the electronic equivalent of a bucket that can store water fed through a pipe – as the 

pressure through a pipe increases, a bucket’s water level gradually increases. The “bucket-water” 

Integrator – Fig.2.  

The circuit to the left performs the 

time integration of the input voltage, Vin. 

The values of the resistor and capacitor are 

scale constants in the resulting output of 

this circuit. This is the most important 

analog circuit in this paper – as it makes 

integration nearly trivial.  
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system, in this manner, can form an “integrator” of sorts. However, unlike the bucket, an 

electronic integrator can integrate very quickly and can be reset nearly instantaneously. It is 

interesting to note, however, that in the above analogy the constant of integration would be the 

amount of water that was present in the bucket when the experiment began. Also, “resetting” a 

“water-bucket” integrator, if such a silly thing were made, would be simply draining its contents. 

The analogous system in the schematic above can be reset and have its initial conditions applied 

by means of electromechanical relays, or FET transistors [3].  

Although this circuit is not able to provide its initial conditions and reset these conditions, 

a practical circuit can be designed to do this [3,4]. In practice, this circuit is relatively simple and 

is shown in figure three below.  

 

 This circuit has two inputs, Vic for the initial condition and Vi for the input 

voltage. The two switches in the center of the figure are the contacts to a relay system, or are 

representative or an equivalent FET system which provides the same operation. When the system 

is in the state in the figure, the noninverting input is at ground potential. Furthermore, the input 

resistor and the left connection of the capacitor are at ground potential. The inverting input of the 

operational amplifier, “-“ on the triangle above, must then be maintained at the ground potential 

if possible. Hence, the following equations may apply.  

𝑉𝑖𝑐

𝑅
=  −

𝑉𝑜

𝑅
 ∴  𝑉𝑖𝑐 =  −𝑉𝑜  Eq.7. KCL applied to the series branch of the circuit above 

 From this point, it is possible to solve for the output voltage to find that the value of 

the output voltage is simply the negation of the input voltage, Vic. In this manner, the circuit 

sets the initial condition across the capacitor, whose other terminal is at ground potential 

[3]. When the switches in the figure above are thrown into the opposite position, so that 

they face upwards, the initial condition circuit is grounded and the integrator operates as 

stated earlier. Thus, a practical integrator is created. Manipulation of the values of the 

resistors and capacitors can change the rate at which the integration takes place as well [3]. 

Finally, the value of R in Fig.3. should be smaller than the value of Ri so the capacitor is 

quickly set with the initial condition – which is the case when the RC time constant is short 

[1].  

 From the two preceding circuits, it should be noticed that a “summing integrator” 

can be designed by combining the two circuits [1,3]. Eq.4. can be rewritten to reflect the 

Practical Integrator – Fig. 3. 

 This circuit is a practical 

integrator, which works on the 

same principles stated above for the 

inverting amplifier with a capacitor 

as its feedback element.  
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summation of the input currents at the inverting input of the amplifier, and the result of the 

output voltage is the negative time integral of the sum of the input voltages, scaled by the 

value of RinputCamplifier feedback for each input [3]. Such a circuit was utilized in this project to 

allow for fewer amplifiers to be utilized and to minimize the cost of the designed circuit 

boards.  

 From this point, it is possible to take sums, differences, products by a constant 

scalar, and time integrals – all by electronic analog circuits. The next question is likely the 

obvious “How can these be used to solve useful problems?” or “How does this do any 

good?”. The first question is answered in the next section, and the second is obvious after 

the first question is answered.  

 Solving Problems: The “Programming” of an Analog Computer 

 The circuits above are the “elements” that constitute an analog computer. In fact, 

they perform mathematical “operations” – and this property gives the “operational 

amplifier” its name. The operational amplifier networks can be utilized to solve problems 

in a straightforward manner. The basic procedure is the following process.  

 
 

 

 

 

 

 

 

 

 

 This basic algorithm details essentially all there is to the utilization of an analog 

computer. Essentially, every problem may be broken down like this. [3] This algorithm is 

utilized latter in this paper to solve one such example problem from elementary physics. In 

principle, it should be noted that computing itself is inherently analog – a “digital” computer is 

very much an analog computer with the caveat that its computational elements operate as 

saturated or cutoff [4]. In this light, it may be that a digital computer could be utilized that 

samples the output of an analog computer, sets up the initial conditions, and even perhaps allows 

for a FPGA like matrix to connect the relevant elements of the machine together. Scaling could 

also be treated by a digital machine in such a manner. Such a “hybrid computer” is interesting, 

because if the precision of an analog computer could be made very precise in the future, this may 

allow for large dynamic systems to be modeled in real time [5]. Furthermore, it should be noted 

Steps to Using an Analog Computer [3] 

1. Identify the equations that must be solved in a problem. 

2. Draw a flowchart stating how the elements of the computer 

must be configured to model the desired problem. 

3. Estimate the values of the quantities at hand and scale them 

if required. If time must be scaled, scale it also.  

4. Set up the actual computer to reflect step #3 and step #2.  

5. Run the system, recording the results with a sampler or 

oscilloscope. 

6. Analyze the results for accuracy and utility, execute this 

algorithm again until the desired results are established.  
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that the human mind itself is a “hybrid computer” in that it contains elements of both digital and 

analog computation.  

 Design of an Analog Computer 

 The introduction and programming sections of this paper detail all the information about 

this project, except for the exact details of how such a machine would really be constructed. To 

this end, some research was conducted on the details of actual analog computers [6]. Such 

machines utilize the elements presented earlier in this paper, and contained the same basic design 

throughout various manufacturers [6,7]. Essentially, the machines contained the same set of 

items: a series of amplifiers and integrators wired to a “patch panel” where the machine can be 

manually wired to reflect a given problem, input devices – such as potentiometers which store 

constant values and coefficients, and output devices – such as pen and ink recorders or storage 

oscilloscopes [3,6,7]. In addition, a digital system was sometimes incorporated to control the 

setup of the system’s initial conditions and the time for which the integrators operated [8]. An 

image of such a machine is shown in figure four below.  

 

  

 

 

 

 

 

 

 

 

 

 

 Observations of historical analog computers lead to a similar modular design for the 

printed circuit boards for the analog computer documented in this research paper. From this 

point, the schematics of the Heathkit EC-1 [9], previous analog computers [10], and intuition 

from previous electrical engineering courses at The Georgia Institute of Technology were 

utilized to design the following schematics for the prototype analog computer. Each of the three 

subunits has many terminals – which acted as the “patch panel” and allowed for the device to be 

configured differently.  

  

Analog Computer: EAI TR-48 

Fig.4. 

 This machine is a 

typical analog computer, Ca. 

1963-4. The potentiometers to 

the right provided constants or 

coefficients, the patch panel in 

the center was the machine’s 

“program”, and the left of the 

machine included a digital volt 

meter for numerical output.  

Potentiometers 

I.E. Coefficients 

Patch Panel 

“program” 

Voltmeter, 

integrator 

control 
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Schematics of the Analog Computer Prototype –  

 The schematic diagrams were written after a breadboard prototype was tested on several 

different circuits. The one that functioned superior to the other designs, as determined by a trial 

and error process, was utilized in the final schematic diagrams. The prototype functioned as one 

of the three final units would in the final circuit, and a photograph of it is included on the 

following page.  

 

 

 

 

 

 

 

 

 

After the schematic diagram was written and tested, the board layout for the system was 

completed in early-mid November, 2016. This final design was sent to the senior design 

department of The Georgia Institute of Technology, where the generous assistance of David 

Steinberg and Kevin Pham allowed for the final boards and parts to be ordered from OSH Park 

and Digikey, respectively. The items were delivered by December 6th, 2016 and their 

Prototype Schematics – Fig.5. 

The schematic diagram above, made in Eagle 7.2 during November, 2016, was utilized in the 

system that this paper documents. Several points about the design should be made. First, the 

terminals allow for quantities to be represented by different factors of ten (for instance, the input 

x10 to the integrator leads to this variable to be scaled by ten times what the x1 input would 

yield) – resistors differing by a factor of ten were used to make this possible. In addition, a 

follower was used to isolate the potentiometer from the low impedance, ten kilo-ohms, of the 

initial condition circuit. Finally, the D connectors shown in the right of the schematic diagram 

allowed for the connection of the three boards together without any difficulty. Thus, three 

integrators and three summation amplifiers are available for use in the prototype analog 

computer.  
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construction and testing began shortly thereafter – the three boards were completed by December 

15th, after final’s week for the Fall semester of 2016 was completed and time was available.  

 

For the sake of precision, the final board layouts for the printed circuit boards are copied 

here. Gerber files were exported from these designs and sent to OSH park for fabrication. This 

service did their job adequately, allowing for this prototype analog computer system to be 

completed before the end of the Fall Semester of 2016. Notice how the power traces and relay 

traces between the boards are thin – only 10 mils or so. This was a flaw on the part of the author. 

The autorouter was employed, and it did a terrible job. This was done due to a lack of time, 

considering my current studies. However, the boards function as desired despite this.  

 

Breadboard Test Circuit for Prototype 

Analog Computer Circuit Boards – Fig.6. 

 This circuit, photographed on 

December 3rd, 2016, was the test apparatus 

that was utilized to perfect the schematic 

design for the final system. In this 

photograph, the system is configured to 

model the trajectory of a body in motion 

under an initial velocity and the force of 

gravity. The power supply is towards the 

right, and the myDaq unit in the center right 

read off the output voltage values.  

Printed Circuit Board Plans – Fig.7. 

 The photograph to the left shows 

the printed circuit board layout designed 

for the analog computer prototype. The 

red layer is on the top of the printed circuit 

board, where the components are placed 

and soldered, while the blue layer is on 

the bottom of the board. The design is 

inelegant and hasty, but gets the job done. 

The square blocks with the two lines on 

the right of their symbol are the terminal 

blocks that the machine utilizes to connect 

the operational amplifier circuits together. 

Notice that the system allows for a single 

pole double throw relay switch to alter the 

feedback elements of the circuit – 

allowing for different integration rates and 

gain constants for the 

integrator/summation amplifier, 

respectively.  
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 During the final days of the fall Semester of The Georgia Institute of Technology, the 

system was assembled and tested. The final system, with some relevant remarks, is included 

below. The device worked as specified, after a few soldering errors were discovered in one of the 

first boards.  

 

 

 

 From this point, the final system was completed. Soon thereafter, the system was 

programed to solve the equations of a bouncing ball – although this is not documented in this 

paper. The completed system is shown in the following image – it was ready for its first 

“program”. One such problem is detailed in the following section.  

Final Assembled Circuit Board – Fig.8. 

 This photograph shows the first of 

three printed circuit boards constructed for the 

analog computer prototype. This unit was the 

first one completed, and all of them were 

assembled by December 15th, 2016. Shortly 

thereafter, the system was utilized to model 

the trajectory of a bouncing ball. However, I 

did not have a storage oscilloscope – so the 

results of calculations on the machine could 

not be appreciated until latter. Finally, notice 

how the operational amplifiers are not 

inserted into their pin sockets yet in this 

image. Such sockets were added so no 

soldering would be required if one broke.  

Printed Circuit Board During Assembly 

- Fig. 9. 

This image shows one of the three 

printed circuit boards during assembly 

– where through-hole components are 

inserted into the board and soldered to 

the back of it. Notice how the back of 

this board’s traces coincide with the 

blue traces on the earlier layout design 

shown in Fig. 7.  

Integrator 

output 

X0.1 input, 

integrator 

 

X1.0 input, 

integrator 

X10 input 

integrator, &ct.  

Initial Condition 

Rheostat. (for 

integrator).  

Initial Condition Relay Terminals Summation Amp. Inputs 
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 As the above images detail, the system was completed during mid-December 2016 and it 

was possible to solve differential equations with the system, as detailed in the procedure above 

[3,9]. Thus, this paper studies one such stereotypical system, the falling body problem from 

introductory physics.  

 The Falling Body Problem solved on an Analog Computer – First Experiment 

  

 A body with an initial velocity under the influence of gravity is a common problem 

solved in elementary physics. Such a system is given below, with its subsequent free body 

diagram and equations. Notice that the problem assumes that the body is under the influence of a 

constant acceleration due to gravity, meaning it is near the surface of the earth [10].  

  

 

 

 

 

 

 

 

 

 

 

Final Analog Computer Prototype wired 

to model bouncing ball system – Fig.10.  

     This image shows the completed 

analog computer prototype. Notice that it 

consists of three of the boards as detailed 

in the schematic diagrams and board 

layouts above. This particular system, 

hastily constructed due to time constraints, 

modeled the trajectory of a bouncing ball – 

it actually utilized the exact same system 

that was documented in the Heathkit EC-1 

manual [7,9].  

2 Kilogram Mass 

Initial Velocity Vector: 

10 meters/second at 45° angle 

Surface of Earth 

Initial Position: 2 Meters 

Above Earth.  

 

Fg 

Falling Body Problem – Fig.11. 

     The two-kilogram mass in this 

free body diagram initially has a 

velocity of 10 meters/second at a 

45-degree angle with the horizon. 

It starts at a position that is two 

meters above the ground. The 

only force acting on the object is 

the acceleration due to gravity. 

The question that must be solved 

is: “What is the trajectory of this 

object given these initial 

conditions?”. Such a problem is 

easily solved by the prototype 

analog computer designed in this 

paper.  
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     The problem may be solved as in physics I, where Newtonian mechanics was introduced. 

First, the initial velocity must be divided into its x-axis and y-axis components. This is done as 

follows: 

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑥 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 10(
𝑚

𝑠
) cos 45° = 7.071 𝑚𝑒𝑡𝑒𝑟𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 Eq.8. Initial Velocity – x-axis 

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙−𝑦 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 = 10 (
𝑚

𝑠
) sin 45° = 7.071 𝑚𝑒𝑡𝑒𝑟𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 Eq.9. Initial Velocity – y-axis 

 Since these components of the initial velocity are known, it is possible to utilize 

Newton’s Second Law and known kinematic equations to model the trajectory of the object as it 

moves through space [9]. Thus, the following equations may be stated.  

𝐹 = 𝑀𝐴 = 𝑀 ∗ 9.8
𝑚𝑒𝑡𝑒𝑟𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
→ 𝐹𝑜𝑟 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑛𝑒𝑎𝑟 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑜𝑓 𝑒𝑎𝑟𝑡ℎ. Eq.10. 2nd Law 

 It is known that the acceleration due to gravity is nearly 9.8 meters per second, constant, 

on the surface of earth. Since this always points toward the ground, it acts in the y-axis direction. 

There is no acceleration in the x-axis direction, at least for this problem where wind resistance 

and friction are neglected. From this point, we realize that acceleration is the derivative of 

velocity and velocity is the derivative of position. Thus, it is true to state the equations below.  

𝑑𝑝

𝑑𝑡
= 𝑣 , 

𝑑𝑣

𝑑𝑡
=

𝑑2𝑝

𝑑𝑡2 = 𝑎 Eq.11.1-11.2 Velocity is the derivative of position, &ct.  

 Notice in the above equations, p is the position of an object, v is its velocity, and a is its 

acceleration. From these equations, it seems that if acceleration were integrated twice, then the 

position of an object would be known. Of course, the initial conditions of the problem at hand 

would have to be known for this to work correctly. However, we may state Eq. 11. as stated 

earlier below.  

∫ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)𝑑𝑡 + 𝐴 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 Eq.12.1 – Finding velocity from acceleration. 

∫ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑡)𝑑𝑡 + 𝐵 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  Eq.12.2 – Finding position from velocity 

 Notice in the above equations, A and B are the initial velocity and the initial position 

respectively. For the analog computer utilized in this project, these are the initial conditions 

applied to the operational amplifier integrators. From these observations, although we do not 

know the analytic solution to the problem, we have stated all that is required to set up the analog 

computer to solve the problem. From this point, we may draw a flow chart that reflects the 

general idea written above: integrate acceleration (if nonzero) and add the initial velocity as its 

initial condition, then integrate this value to find position. Notice that the initial condition of the 

second integrator is the initial position of the object. This process may be done for the x-axis and 

y-axis components, and with a storage oscilloscope the trajectory of the object may be found. 

The next page shows the flow chart that details this idea schematically – the analog computer in 

this project was set up based on this diagram and the solutions were recorded from this.  

 

 Flow Chart of Analog Computer for Falling Body Problem –  

Y-Component of Motion Circuit 
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 The flow chart above is the “program” for an analog computer. Note that each of the 

boxes indicates an operation, constant, or another function that can be executed by the circuit 

elements given earlier in this paper. From this work, it is possible to wire the analog computer to 

− ∫ 𝐴(𝑡)𝑑𝑡 + 𝑉𝑖𝑛𝑖𝑡 

Op Amp Integrator 

Ag 

-Vinitial-Y-Axis 

− ∫ 𝑉(𝑡)𝑑𝑡 + 𝑃𝑖𝑛𝑖𝑡 

Op Amp Integrator 

-Pinitial-Y-Axis 

Inverting 

Amplifier 

w/ unity gain. 

-Pinitial-X-Axis 

− ∫ 𝑉(𝑡)𝑑𝑡 + 𝑃𝑖𝑛𝑖𝑡 

Op Amp Integrator 

 

Y-Axis 

To scope 

X-Axis 

To scope 

-Vinitial-X-Axis 

X-Component of Motion Circuit 

Flow Chart of Falling Body Problem on Analog Computer – Fig.12.  

     For the topmost circuit, the acceleration due to gravity is integrated to give the negative of the 

velocity in the y-axis direction. This is fed through a second integrator to find the position of the object 

in the y-axis direction. The inverting amplifier is added to yield a sign change. Below this circuit is the 

integrator that integrates the constant velocity in the x-axis direction to yield the x-axis position of the 

projectile. Thus, the system models the problem of the falling object introduced earlier.   
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implement the problem at hand, in effect to become an “analog” of the problem – with voltage 

analogous to the quantities in the actual problem. This is where the methodology of “analog 

computing” gets its name, not from the use of analog electronics – but since the system models a 

problem by this “analogous” construct.  

 

 A Note on Accuracy -  

 

 Before the program was set up and run, an analytic solution to the introduced falling body 

problem is needed so that the accuracy of the analog computer can be determined relative to the 

known solution. 1% tolerance components were used in the machine, and precision low drift and 

high bandwidth operational amplifiers (LF 412’s) were utilized to minimize unideal analog 

effects that the system may encounter. Furthermore, the voltage values in the system were 

checked with a digital volt meter to ensure they are set to the precise values that are required. 

Despite this, however, the system did have an issue with high-frequency noise and other 

interference. A low-pass RC filter was added to the output of the final stages to prevent this noise 

from damaging the output values as recorded by the Rigol 1102 storage oscilloscope. It appears 

to yield results within a reasonable margin of precision and error – likely limited by the quality 

of the components in the machine’s construction.  

 

 Analytic Solution to Falling Body Problem –  

 For certain problems, an analytic solution is difficult to impossible to find [11]. In such 

cases, approximation by a digital computer program or an analog computer is the only means to 

analyze such systems – which may be chaotic in nature. However, the falling body problem 

introduced here is not such a system – it is possible to find an analytic solution for the problem. 

This is found by direct integration as follows below.  

∫ −9.8𝑑𝑡 +  𝑉𝑖𝑛𝑖𝑡−𝑌−𝐴𝑥𝑖𝑠 = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = [−9.8𝑡 + 7.071]𝑚/𝑠 Eq. 13. Velocity – Y-Axis 

When this function is integrated again, position along the y-axis may be found. That is: 

∫ −9.8𝑡 + 7.071𝑑𝑡 +  𝑃𝑖𝑛𝑖𝑡−𝑌−𝐴𝑥𝑖𝑠 = −4.9𝑡2 + 7.071𝑡 + 𝑃𝑖𝑛𝑖𝑡−𝑌−𝐴𝑥𝑖𝑠  Eq. 14. Position, Y-Axis 

From the initial condition that the object begins at 2 meters above the ground, it can be shown 

that the value of the y-axis component of the position of the object is the equation stated as 

follows.  

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑦−𝑎𝑥𝑖𝑠 =  −4.9𝑡2 + 7.071𝑡 + 2   𝑚𝑒𝑡𝑒𝑟𝑠 Eq. 15. Position of the projectile, Y-Axis 

This same idea may be used to solve for the x-axis position value as a function of time. 

Proceeding as before, only a single integration is required since the x-component of acceleration 

is zero. Thus, a single integration of velocity may yield the x-component of the projectile.  
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Analytic Solution of Falling Body Problem (continued) 

∫ 7.071𝑑𝑡 + 𝑃𝑖𝑛𝑖𝑡−𝑋−𝑎𝑥𝑖𝑠 =  𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥−𝑎𝑥𝑖𝑠 = 7.071𝑡 + 0 Eq. 16. Position X-Axis. 

 

Scaling the Values for the Analog Computer 

 

From this manipulation, an analytic solution is known for the system. Now the first two steps of 

the earlier flow chart have been executed. Now the values for the analog computer must be 

scaled if they do not fit into the range available to the machine, which is fixed by the power 

supply voltages of +/- 12 Volts. The range of the values involved in the problem may be found 

using established equations for projectile motion [12]. These are stated below.  

𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑥 =
(𝑉𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑆𝑖𝑛(𝜃))2

2∗𝑔
=  

(5∗√2)
2

19.6
= 2.55102 𝑀𝑒𝑡𝑒𝑟𝑠 Eq.17. Max Height Projectile. 

Notice in the equation above, θ is the angle at which the initial velocity vector is positioned, in 

this instance 45 degrees. Also, Magnitude is the magnitude of the velocity vector, or 10 m/s. The 

rest of the variables follow from the earlier equations, for instance g is the acceleration due to 

gravity.  

Also of interest is the range at which the projectile travels, which sets the scale factors (if they 

are required) on the x-axis quantities in the computer. The equation for the range that the 

projectile travels is well known as the following equation [12].  

𝑅𝑎𝑛𝑔𝑒 = 𝑀𝑎𝑥 − 𝑋 − 𝐴𝑥𝑖𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
𝑉𝑚𝑎𝑔𝑛𝑒𝑡𝑢𝑑𝑒

2

𝑔
sin(2𝜃) =

100

9.8
= 10.204 𝑚𝑒𝑡𝑒𝑟𝑠 Eq.18.  

The values are reasonable if a 1 volt = 1 meter scale factor is introduced. This is very easy for 

this problem, a rather simple problem. However, this is always not the case and sometimes 

several scale factors must be introduced. The process is the same, however. If the maximum 

values in a problem are not known, then they can be estimated for this purpose [3]. If they are 

not correct, and the output is too small to be reasonable or causes the amplifiers to saturate, then 

the process can be repeated in a trial-and-error type of fashion.  

 Since the magnitude scale factor has been set (1volt = 1 meter for both x and y axis values), a 

time scale value must be set for the system as well. One reasonable choice is to set the system to 

run in “real time” where one second in the problem is also a single second in the computer’s 

time. This need not be the case, however, and altering the value of the capacitors in the 

machine’s integrators can scale time like other quantities in the machine. The system is run in 

real time by using a 1µF capacitor as the feedback on the integrator and a 1Meg ohm resistor as 

the inputs to the integrator – this leads to the time integration of the voltage with respect to time 

in that the integrator increases its output value by one volt every second that a constant one volt 

input is applied. Now that the scale quantities are set, all that is left is to run the system on the 

machine and test the results that are ascertained. This is detailed in the next section.  
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 Programming the Analog Computer 

 The machine must be wired to reflect the falling body problem system. This is 

accomplished by manually wiring it to reflect the block diagram given on page 12. The x0.1 

input of the y-axis velocity integrator is connected to a potentiometer that has +9.8 volts across 

it. The initial condition of this integrator is -7.07 volts, of the initial y-axis velocity. The output 

of the y-axis velocity integrator is then fed into the x0.1 input of a following integration stage, 

see the figure on page nine to see where these input terminals are located on the machine. The 

position integrator on the y-axis system is then set to have an initial condition of +2 volts, or the 

initial condition for the y-axis position. This completes the y-axis circuit and the output is 

connected to the y-channel input of the x-y storage oscilloscope, after it is passed through an 

inverting amplifier (made with a summation amplifier, with only one input) and a low pass filter 

made with a 10k Ohm resistor and a 0.1uF Capacitor. The output thus has the correct polarity 

and is free from high frequency noise.   

 The x-axis system is wired in a similar fashion, the single integrator has a x0.1 input 

(which uses a 1Meg Ohm resistor for the resistance connected to the input terminal of the 

operational amplifier – see the schematic diagram given earlier) attached to a potentiometer 

which feeds -7.07 volts into this input. The initial condition of this integrator is set to zero volts, 

and the output is passed through an identical low-pass filter as detailed for the y-axis system. 

Now the system is completed and ready to solve the established falling body problem. The 

output plots are attached in the figure below, acquired when the system was run.  

 

Results 

 

 

Output of Prototype Analog 

Computer – Fig.13.  

     This is the output of the analog 

computer, as recorded by a Rigol 

1102 storage oscilloscope. The 

scale on this plot is two volts per 

division for both the x and y axes. 

Notice that the object is shown as 

moving in a parabolic trajectory 

that has a peak of about 2.25 volts 

and a range of about 10 volts. 

Since 1 volt = 1 meter in this 

system, these agree with our 

expectations.  

The Origin – Shifted here.  

The Body’s 

Trajectory 

Initial Position 

X = 0, Y = 2 volts. 

Scale Factors for Analog Computer:  

1 Volt = 1 Meter, x and y axis. Plot: 2 volts/div. 
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 The system was solved by the prototype analog computer, which answers the first 

question of this project and part of the remaining questions. It is possible to model a dynamic 

system with analog electronic circuits. The accuracy is imperfect, albeit decent. Notice how there 

is a line on the right of the figure above. This is not an error on the computer’s part – instead the 

x-axis integrator is saturating at this point and the system is unable to represent a further x-

position. This could be remedied by using higher voltages in the system, or by scaling the 

problem as detailed earlier. Notice the projectile starts at one unit above the origin, or two volts. 

This is the initial condition given earlier.  

 Comparison with the results with the actual solution 

 

 Error Analysis – First Experiment 

 Several characteristics are measured off both plots for comparison. From these values, the 

percent error of the analog system can be found. This should, theoretically, be within 1% or so – 

but could be better or worse in practice. Thus, the measurements and calculations are stated.  

Error Analysis - Analog Computer vs. Actual Solution - Table.1. 

Measurement Analog Plot Actual 

Solution 

Percent Error (%) Units - Measured 

Quantity 

Peak Value – 

trajectory (Hmax) 

2.3 2.55 9.803921569 Meters 

Range - X-Axis 9.9 10.2 2.941176471 Meters 

Run Time - Actual 

System 

1.7 1.44 18.05555556 Seconds 

Solution to Falling Body Problem – Actual 

solution as found by TI-84 – Fig. 14.  

     Notice how this plot shows the same 

characteristics as the plot given by the analog 

computer above. The scale is identical, at two 

volts per division. It appears that the analog 

computer computed a very similar trajectory to 

what this digital device could do – with an 

error of 8% or less (see error analysis section, 

below). This experiment makes an analog 

computer seem like an analog graphing 

calculator, or electronic slide rule, which 

essentially captures the central idea of what the 

thing does. This plot was added here for 

comparison with the results as posted in Fig. 

13.  

Initial Position 

X = 0, Y = 2 (meters).  

The Origin 

The Body’s Trajectory 
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 The percentage error is within 10%, at least for the measurements of the distance 

quantities. The run-time is off by the largest margin, 18%. This might be due to the stopwatch 

operation that was utilized to make this measurement. The reason for the discrepancy in the 

dimension values may indeed be described by a voltage source that was later found to vary by 

10% in its operation. The average percent error of the system is 10.26%, roughly equivalent to 

that of a slide-rule calculation. However, an analog computer can model dynamic systems in real 

time while a slide rule is limited to static calculations.  

 Before any major conclusions are drawn regarding the viability of analog computing, 

another trial run was tested on the system. This serves two purposes, to determine if the above 

results are indicative of the system’s behavior, and to show the use of an analog computer in a 

problem where the parameters are varied to see the results of a certain theoretical situation.  

 

Second Falling Body Problem – g is changed to 12.0 meters/second2 

 

 For the sake of brevity, the exact same problem parameters were kept, except for the 

alteration of g to a value of 12.0 m/s2. The system was wired in the exact same manner, because 

the equations were the exact same system. After the computer was run, the plot was taken and is 

reprinted in the figure below.  

 

 

 

 The actual solution for this can be found by interchanging the constant of acceleration in 

the earlier equations from 9.8 to 12.0 meters/second2. When these manipulations are made, a 

graphing calculator can compute the resulting trajectory. This was accomplished for this problem 

and the resulting plot is on the following page. 

 

Falling Body Problem II – Fig.15.  

     This system is the exact same falling 

body problem, with the corollary that the 

acceleration due to gravity is fixed at 

12.0 m/s2, as opposed to its previous 

value of 9.8 m/s2. This would be the case 

if a projectile were thrown on another 

planet, with a different mass and 

geometry than earth. Although such a 

system may not be seen by terrestrial 

human beings, the machine can still 

model it readily.  

Initial Position: 

X = 0, Y = 2 

The origin (shifted here).  

The Body’s Trajectory 

Range 

H max 
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Error Analysis – Falling Body Problem II 

Error Analysis - Analog Computer vs. Actual Solution - Table.1. 

Measurement Analog Plot Actual 

Solution 

Percent Error (%) Units - Measured 

Quantity 

Peak Value – 

trajectory (Hmax) 

1.9 

 

2.08 8.6538 Meters 

Range - X-Axis 7.60 8.33 8.7635 Meters 

 

 For this instance, the run-time value was omitted as it is believed that human error and 

oscilloscope sampling delay contributed to the discrepancy of this quantity. Notice how the error 

values from this experiment are still close to 10%. It appears that a different design, better 

workmanship, or more precision components would be required to construct a better machine. 

Notice that although 1% resistors were utilized in this machine, since dozens of them were linked 

together to build the machine it is possible that the error accumulated – resulting in the 10% 

discrepancy reported in the table above.  

 An analog computer can be useful in its ability to simulate multiple solution trajectories 

for a certain problem in very little time. For the above falling body problem, this is demonstrated 

in the following figure. In this instance, the initial velocity of the body is altered while gravity is 

left at a constant value, g. The different solution trajectories are shown, and their initial 

conditions are related next to the figure. Such solution sets can be computed instantaneously if a 

digital computer were utilized to provide the control signals for the machine, initial conditions, 

and to time the operation of the integrators in the machine [8,10].  

Actual Solution – Falling Body Problem 

II – Fig.16. 

     This is the actual solution to the second 

falling body problem – added to compare 

the accuracy of the analog computer to a 

digital computer. Notice that the graphs 

again show a similar parabolic trajectory. 

They are quantitatively similar – as is 

shown in the following table for the error 

analysis. The line in the center of the 

image is the line y = 2. Notice that the 

projectile falls faster when the force of 

gravity is increased, as can be expected in 

this situation – which would mean that the 

planet the projectile is located on would 

have more mass than earth.  

The Body’s Trajectory 

The Line Y = 2 

Initial Position 

Y = 2, X = 0.  
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 Third Experiment – Falling body problem solution set for different initial conditions 

  

 

 

 

 

 

 

 

     In addition to being useful as a model of physical systems, analog electronic circuits can be 

utilized as a useful classroom tool and apparatus for demonstration purposes. One such 

application is detailed in the following section.  

     The use of Analog Computing with a Chaotic System of Equations 

 The Lorenz differential equations, a set of three linked differential equations, has a 

chaotic solution trajectory under certain initial conditions and input parameters [11]. This system 

of equations has the following form: 

𝑑𝑥

𝑑𝑡
= 10(−𝑥 + 𝑦) Eq. 19.1. Lorenz Equations First Equation. 

𝑑𝑦

𝑑𝑡
= 28𝑥 − 𝑦 − 𝑥𝑧 Eq. 19.2. Lorenz Equations Second Equation. 

𝑑𝑧

𝑑𝑡
=  −

8

3
𝑧 + 𝑥𝑦 Eq. 19.3. Lorenz Equations Third Equation. 

These equations form a nonlinear, autonomous three-dimensional system [11]. Such a system 

can be demonstrated with the utilization of analog circuits to model the system above.  

Soln. #1. Vx = 7.07 m/s, 

Vy = 10 m/s.  

Soln. #2. Vx = 7.07 m/s, 

Vy = 7.07 m/s.  

Soln. #3. Vx = 7.07 m/s, 

Vy = 3.00 m/s.  

Soln. #4. Vx = 7.07 m/s, 

Vy = 0.00 m/s.  

Four Solution Curves for Falling Body Problem – Fig.17 

     The analog computer can compute many solution trajectories for the falling body 

problem in response to different initial conditions. The y-component of the initial velocity 

is altered above to yield a family of such curves. A digital computer can operate the 

analog computer so that these solutions can be viewed at once on an oscilloscope/sampler. 

Notice the acceleration due to gravity is fixed at 1g (9.8 meters/second = 9.8 volts) and the 

initial condition is y = 2, x = 0 (the above graphs are shifted) for all solution trajectories.  
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 The above circuit contains resistors that act as the coefficients in the Lorenz equations. 

The first integrator contains two input resistors of 100k ohms each, which have their inputs from 

the x and -y inputs. These are summed, negated, and then integrated. The result is ʃ10(-x+y)dt = 

x. The same process is executed by the remainder of the circuit. Since each of the integrators has 

an output that is proportional to the reciprocal of RinputCfeedback capacitor, the values of the 

resistances in the circuit are altered to reflect the relative magnitudes in the above differential 

equations. The equation that governs this “scaling” is below.  

1

10−6𝑅
= 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 Eq. 20. Lorenz Equation Scaled Resistance Values.  

This equation leads to the values of 100k ohms in the first circuit above. Furthermore, it can be 

utilized to determine that the y-integrator should have resistance values on its input of 35.7k 

ohms, 1 Meg ohm, and 10k ohms for the x, -y, and product term -xz/100 respectively. 

Furthermore, the values of the input resistances in the final integrator for the z variable are 10k 

and 374k Ohms by the same principle.  

 

 Since this system is designed, it can be constructed to observe typical solution trajectories 

for the differential equation. This was accomplished in November, 2016 for Dr. Chen’s 2552 

Introduction to Differential Equations Course at The Georgia Institute of Technology. Dr. Chen 

was very generous with his time and assistance, and it was a true honor to be able to show this 

experiment to his students when the “chaos” section was studied latter in the fall, 2016 semester.  

 From this application, it is apparent that analog computers can be utilized in a variety of 

settings and contexts. In addition, it is obvious that they can be utilized for demonstration 

purposes. Their main limitations include difficulty of programming and limited accuracy. After 

these two concerns, a limited range of quantities is also a difficulty to circumvent. However, if 

these three problems could be rectified, then analog electronic circuits could be utilized for a 

variety of tasks and purposes [10].  

Schematic of Lorenz Equation Analog 

Circuit Model – Fig. 18.  

     This image shows the schematic of the 

Lorenz equation circuit model, which 

calculates the x,-y, and z values of the 

solutions to the above set of equations. The 

terms are summed and then integrated by 

the three summing integrators. The 

multipliers on the left-hand side of the 

figure provide the nonlinear terms that are 

required by the system. The output can then 

be viewed in real time on an oscilloscope.  
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Conclusions 

 Although analog computation is a viable means to simulate dynamic systems, differential 

equations, and other operations, it remains plagued with difficulties. Despite much effort in this 

area, the percent error for such machines remains at 10% or so. Perhaps this can be reduced, 

maybe in the future. If this were to occur, then there may be specialized applications for such 

devices – as in instances where power is at a minimum or where simplicity is required. Until 

such time, this area represents a dead end as it is impossible to proceed without great difficulty. 

However, this research was not in vain – as it shows that alternate computational paradigms are 

possible with different systems of representation, operations on information, and input/output 

devices. Furthermore, it was realized that analog computation can model the qualitative 

information of a system within 10% of the correct values. Thus, for applications where this error 

is negligible or can be tolerated, such devices can be utilized. In addition, analog computers can 

show qualitative behavior of differential equations very close to the expected curves as graphed 

by a digital computer. If it were possible to eliminate the “patch panel” nature of programing an 

analog computer, and to use a digital system to minimize the machine’s error, then it would be 

possible to utilize analog computation as a high-speed and concise engineering tool.  

 

 In conclusion, this project answered the questions asked in the introductory section. It is 

possible, with some moderate difficulty, to design an analog computer and to solve physical 

problems on it. It can solve these problems, with an error of about 8%-10% under normal 

circumstances. If a large scale analog computer were constructed, great care would have to be 

taken in regards to component precision, analog noise, and other unideal aspects, to make such a 

system viable and able to perform better than a digital computer. Now in my studies, such a task 

is beyond the realm of my abilities. However, this is a perfect springboard for such a future 

project. Perhaps it is possible that a carefully designed analog computer may have some use in 

the future of research and development, industry, or consumer electronics?  
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