I. HITACHI 220D/240D/260D GENERAL SPECIFICATIONS

1. HITACHI MODEL BA-220 FULLY WIRED BASIC ANALOG CONSOLE

1.1 Size and Weight

<table>
<thead>
<tr>
<th>Height</th>
<th>730 mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>730 mm. *(1030)</td>
</tr>
<tr>
<td>Depth</td>
<td>580 mm.</td>
</tr>
<tr>
<td>Weight, Approx.</td>
<td>70 kg. *(120)</td>
</tr>
</tbody>
</table>

Remarks: Figure within parenthesis denotes the dimension or weight, as the case may be, of the Basic Console with Oscilloscope Panel.

1.2 Computer Power Requirements

- **Voltage**: 110/110/120/220/240V. AC±10%
- **Frequency**: 50/60 Hz ± 1 Hz
- **Power consumption**
 - **Basic Console**: 200W, typical
 - **Oscilloscope**: 70W, typical

1.3 Reference System

- **Output voltages**: +10V, -10V Nominal
- **Output current**: 0.2A
- **Balance of two Refs.**: Adjustable to ±0.01%
- **Noise**: 2mVp-p, maximum
- **Noise**: 1mVp-p, typical
- **Temp. coefficient**: ±0.001%/°C

1.4 Operations Modes

- IC, Operation, Hold, Slave, Pot-set, All
- IC, Patch panel, Timer

1.5 Control Commands

- **Manual switches**, Timers, Output Signals of Digital Logic, and External signals

1.6 Function of Control Panel

- **a) Visual overload indicator**
b) Needle type indicating voltmeter

c) Null potentiometer and polarity switch

d) Voltmeter function switch

e) Voltmeter range switch

f) Amplifier selector switch

g) Trunk lines selector switch

h) Mode control switch

i) Integrator time scale switch

j) Time adjuster and scaling switch

k) Power on-off switch

1.6 Repetitive Operation

Basic: OP time 1 msec to 10 sec, continuous

IC time Fixed

Relay Mode Control time
differential (Hold mode) ... 200μs, maximum

50μs, typical

Electronic Mode Control
Time differential
(IC & Operation Mode) .. 1μs, maximum

2. HITACHI MODEL BA-240 FULLY WIRED BASIC ANALOG CONSOLE

2.1 Size and Weight

Height: 730 mm

Width: 1050 mm *(1350)

Depth: 580 mm

Weight, Approx.: 110 kg. *(160)

Remarks: Figures within parenthesis denotes the dimension or weight, as the case may be, of the Basic Console with Modular Logic Control Panel.

2.2 Computer Power Requirements

Voltage 100/110/120/200/220/240 VAC ±10%

Frequency 50/60 Hz ± 1 Hz

Power consumption Basic Console: 300 W, typical

Logic Console: 120 W, typical

Oscilloscope: 70 W, typical

2.3 Reference System

Same as for Item 1.3

2.4 Operations

Same as for Item 1.4

2.5 Function of Control Panel

Same as for Item 1.5

2.6 Repetitive Operation

Basic: OP time 1 msec to 10 sec, continuous

IC time Fixed

Option: OP time 1 msec to 9.9 sec (using TM-243)

IC time 1 msec to 9.9 sec (using TM-243)

Multi Modes IC-OPERATION (using TM-243)

OPERATION-HOLD (using TM-243)

IC-HOLD (using TM-243)
II. ANALOG COMPUTING COMPONENTS SPECIFICATIONS

<table>
<thead>
<tr>
<th>Relay Mode Control</th>
<th>time differential</th>
<th>200μs, maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Hold Mode)</td>
<td></td>
<td>50μs, typical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electronic Mode Control</th>
<th>time differential</th>
<th>1μs, maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(IC & Operation Mode)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. HITACHI MODEL BA-260 FULLY WIRED BASIC ANALOG CONSOLE

3.1 Size and Weight
- **Height:** 920 mm.
- **Width:** 1180 mm. *(1480)*
- **Depth:** 590 mm.
- **Weight, approx.:** 160 kg. *(210)*

Remarks: Figures within parenthesis denotes the dimension or weight, as the case may be, of the Basic Console with Modular Logic Control Panel.

3.2 Computer Power Requirements
- **Voltage:** 100/110/120/200/220/240V AC ±10%
- **Frequency:** 50/60 Hz ±1 Hz
- **Power consumption:**
 - Basic Console: 400 W, typical
 - Logic Control: 120 W, typical
 - Oscilloscope: 70 W, typical

3.3 Reference System
- Same as for Item 1.3

3.4 Operations
- Same as for Item 1.4

3.5 Function of Control Panel
- Same as for Item 1.5

3.6 Repetitive Operation
- Same as for Item 2.6

4. MODEL CT-245, SERVO AMPLIFIER FOR BASIC ANALOG COMPUTER

4.1 Functions
- a) Servo-setting potentiometer rotary selector switch
- b) Input selector switch
- c) Servo-set control switch

4.2 Number of selectable servo potentiometers: 40 ea.

4.3 Install location: Manual potentiometer panel

5. MODEL DP-241, DIGITAL-ANALOG CONVERTER FOR BASIC ANALOG COMPUTER

5.1 Function
To generate reference coefficient for potentiometer setting.

5.2 Accuracy: ±0.01%

5.3 Coefficient: 0.0001 to 0.9999
5.4 Install location: Manual potentiometer panel

5.5 Drift ±1 mV/8h

6. MODEL TM-243, REPETITIVE OPERATION TIMER

6.1 Number of time periods 2,
 (IC-Operation)
 (Operation-Hold)
 (IC-Hold)

6.2 Range of each period 1 msec to 9.9 sec. (Operation)
 1 msec to 9.9 sec. (IC)

6.3 Install location Manual potentiometer panel

7. MODEL DA-141, QUAD D.C. AMPLIFIER

Output Voltage ±10V, Minimum, at 500 ohms load
Output Current ±20mA, Minimum
 ±25mA, Typical
Output Impedance 30 ohms, Typical
Input Impedance 100 kohms, Typical
Frequency Bandwidth (-3dB) 1 MHz, Minimum, with 10k/10k
 inverter at 1Vp-p input
 300kHz Minimum, with 10k/10k
 inverter at 20Vp-p input
 100kHz Minimum, with 100k/100k
 inverter at 20Vp-p input

Amplitude Error at 1 kHz input 0.1%, Maximum, with 100k/100k
 inverter

Phase Shift at 20Vp-p, 1 kHz input . 0.1°, Maximum (10k/10k)
 0.2°, Maximum (100k/100k)

Open Loop DC Gain 2 x 10^7, Typical, 1 x 10^7, Minimum
Open Loop Gain at 100 Hz 2 x 10^4, Typical, 1 x 10^4, Minimum
 at 1 kHz
 2 x 10^3, Typical, 1 x 10^3, Minimum

Noise (0 to 80 kHz) 1mVp-p, Typical
 with 10k/10k Inverter not including
 chopper spike, at output

Offset Voltage ±10μV, Typical, at SJ
 ±20μV, Maximum

Offset Temperature Coefficient ±2μV/°C, Maximum, referred to
 ambient temperature, at SJ

Drift 0μV/μs, Typical
Velocity Limit ±10μV/8 hours, Typical at SJ
Number of Resistor Group 2
Number of X 1 Inputs 4/Group (100 kohms)
Number of X 10 Inputs 2/Group (10 kohms)
Overvolt Recovery Time 50μs, Maximum
Capacitive Load 0.01μF, Maximum
Resistor Accuracy ±0.05%
8. **MODEL DA-143, QUAD D.C. AMPLIFIER**

- **Output Voltage** ±10V, Minimum, at 400 ohms load
- **Output Current** ±25mA, Minimum, ±30mA, Typical
- **Output Impedance** 30 ohms, Typical
- **Input Impedance** 100 kohms, Typical
- **Frequency Bandwidth (3dB)** 1MHz, Minimum, with 10k/10k inverter at 1VP-P input
- **Output Voltage** 400kHz, Minimum, with 10k/10k inverter at 20P-P input
- **Output Impedance** 100kHz, Minimum, with 100k/100k inverter at 20VP-P input
- **Amplitude Error at 1kHz Input** 0.1%, Maximum, with 100k/100k inverter
- **Phase Shift at 20VP-P, 1kHz Input** 0.1°, Maximum (10k/10k)
- **Open Loop DC Gain** 2 x 10³, Typical, 1 x 10⁷, Minimum
- **Open Loop Gain at 100Hz at 1kHz** 2 x 10³, Typical, 1 x 10⁷, Minimum
- **Noise (0 to 80 kHz)** 2mVp-P, Maximum
- **Noise (0 to 80 kHz)** 1mVp-P, Typical, with 10k/10k inverter not including chopper spike, at output
- **Offset Voltage** ±20µV, Typical, at SJ
- **Offset Temperature Coefficient** ±2µV°/°C, Maximum, referred to ambient temperature, at SJ
- **Velocity Limit** ±10 µV/8 hours, Typical at SJ
- **Dielectric** Polystyrene (0.1, 0.01, 0.001µF)
- **Integrating Capacitors** ±1µF ±0.05%, 0.1µF ±0.1%
- **Integrating Capacitors** 0.01µF ±0.5%, ±0.001µF ± 1.0%
- **Resistor Accuracy** ±0.1%
- **Integrator Drift** ±100µV/sec, Typical (1µF) at Hold Mode
- **Integrator Drift** ±200µV/sec, Maximum (1µF) at Hold Mode

9. **MODEL IN-141, DUAL INTEGRATOR NETWORK**

- **Number of Resistor Group** 2 (Commited to Integrator Circuits)
- **Number of X 10 inputs** 2/Group (10 kohms)
- **Number of X 1 Inputs** 4/Group (100 kohms)
- **Number of X 0.1 Inputs** 2/Group (1 Mohms)
- **Initial Condition Input** 1 (10 kohms)
- **Dielectric** Polyethylene (1µF),
- **Integrating Capacitors** Polyethylene (0.1, 0.01, 0.001µF)
- **Integrator Drift** ±100µV/sec, Typical (1µF) at Hold Mode

Bandwidth in IC with 0.001μF 1 MHz, Typical, at 1Vp-p Input
IC Time 100μs, with 0.001μF capacitor
T.I.D.E. in IC with 0.001μF at 1 kHz ... ±0.75%, Maximum
Switching Time Differential 1μs, Maximum (IC and Operation switch)

Logic Control Level +6V, Logic ONE; 0V, Logic ZERO.

10. MODEL IN-143, INTEGRATOR NETWORK
Number of Resistor Group 2 (Committed to Integrator Circuits)
Number of X 10 Inputs 2/Group (10 kohms)
Number of X 1 Inputs 2/Group (100 kohms)
Number of X 0.1 Inputs 2/Group (1 Mohms)
Initial Condition Input 1 (10 kohms)
Resistor Accuracy ±0.01%
Integrating Capacitors 1μF±0.01%, 0.1μF±0.1%
Dielectric Polyethylene (1μF).
Integrator Drift ±100μV/sec, Typical (1μF) at Hold Mode
Bandwidth in IC with 0.001μF 1 MHz, Typical, at 1Vp-p Input
IC Time 100μs, with 0.001μF capacitor
T.I.D.E. in IC with 0.001μF at 1 kHz ... ±0.75%, Maximum
Switching Time Differential 1μs, Maximum (IC and Operation switch)

Logic Control Level +6V, Logic ONE;

11. MODEL EM-141, DUAL MULTIPLIER NETWORK
Input Voltage -10V to +10V
Output Voltage -10V to +10V
Static Accuracy ±0.3% of FS, Maximum
Dynamic Accuracy at 1 kHz ±0.5%, Maximum
Phase Shift, Multiplying
10VDC by 20V at 1 kHz 0.2°, Maximum
Input Resistance 3.3 kohms, approx.
Zero/Zero Error ±0.005% of FS, Typical
Frequency Bandwidth (-3 dB)
At Full Inputs 100 kHz, Minimum
Output Noise X = Y = 0 5mVp-p, Maximum
Drift ±2mV/°C, Maximum

12. MODEL EM-143, HIGH ACCURACY MULTIPLIER NETWORK
Input Voltage -10V to +10V
Output Voltage -10V to +10V
Static Accuracy ±0.05% of FS, Maximum
Dynamic Accuracy at 1 kHz ±0.2%, Maximum
Phase Shift at 1 kHz 0.2°, Maximum
Input Resistance 2.5 kohms, approx.
Zero/Zero Error ±0.005% of FS, Typical
Frequency Bandwidth (-3dB)
 at Full Inputs 100kHz, Minimum
Output Noise X = Y = 0 5mVp-p, Maximum
Drift 2mV/°C, Maximum

13. MODEL PT-142, TEN (10) CARBONFILM POTENTIOMETERS WITH FUNCTION SWITCH
 13.1 Potentiometer
 Type Carbonfilm, multiturn.
 Resistance 5 kohm
 Independent linearity not specified
 Resolution not specified
 Protection non-linear lamp
 Dial none
 13.2 Function Switch
 Type Double pole, double throw.
 Contact rating 125VAC, 3A.

14. MODEL PT-143, TEN (10) WIREWOUND POTENTIOMETERS WITH FUNCTION SWITCH
 14.1 Potentiometer
 Type Wirewound, 10 turns
 Resistance 5 kohm
 Independent linearity ±0.02%
 Resolution 0.02%
 Protection non-linear lamp
 Dial compatible to Fairchild Model DFA
 (without lock)
 14.2 Function Switch
 Type Double pole, double throw
 Contact rating 125VAC, 3A

15. MODEL SP-141, FIVE (5) SERVO POTENTIOMETERS
 Type Wire wound, 10 turns, individually
g geared with motor.
 Resistance 5 kohm
 Resolution 0.02%
 Setting accuracy ±0.05% of F.S.
 Setting time 1 sec, typical

16. MODEL FG-141, FOUR (4) FUNCTION GENERATOR TERMINATORS
 Function To be used as terminal on patch panel
 of Function Generator.
 One (1) FG-141 covers up to four (4)
 DFG (diode function generator) cards.
17. MODELS FG-041A, FG-041B, DUAL FIXED BREAKPOINT VARIABLE SLOPE DIODE FUNCTION GENERATOR CARDS

Input Voltage
- Minus-input Generator: 0 to -10V FG-041B
- Plus-input Generator: 0 to +10V FG-041A

Output Voltage: -10V to +10V

Parallax Range: ±10V

Segments: 10/channel, slavable

Maximum Slope: ±2.5

Output Noise: 50mV_{pp}, Maximum at unity slope

Frequency Bandwidth (-3dB): 20kHz at unity slope with 20V_{pp} input

Phase Shift at 100Hz: 0.2°, Maximum at unity slope

Input Resistance: 1kohm, approx.

Setting Accuracy: ±0.2% of FS, Maximum at unity slope

18. MODEL FG-042, FIXED BREAKPOINT VARIABLE SLOPE DIODE FUNCTION GENERATOR CARD

Input Voltage: -10V to +10V

Output Voltage: -10V to +10V

Segments: 10/channel

Maximum Slope: ±2.5

Parallax Range: ±10V

Noise: 50mV_{pp}, Maximum at unity slope

Frequency Bandwidth (-3dB): 20kHz at unity slope

Phase Shift at 100Hz: 0.2°, Maximum at unity slope

Input Resistance: 1 kohm, approx.

Setting Accuracy: ±0.2% of FS, Maximum at unity slope

19. MODEL FG-047, VARIABLE BREAKPOINT, VARIABLE SLOPE DIODE FUNCTION GENERATOR CARD

Input Voltage: -10V to +10V

Output Voltage: +10V to +10V

Segments: 10

Maximum Slope: Practically infinite (>100)

Parallax Range: ±10V

Frequency Bandwidth (-3dB): 20kHz, Minimum at unity slope

Phase Shift at 100Hz: 0.2°, Maximum at unity slope

Input Resistance: 50 kohms, approx.

Setting Accuracy: ±0.5% of FS, Maximum at unity slope

Noise: 50mV_{pp} at unity slope

20. MODEL FG-143A, DUAL SINE-CONVERSE, DG, (IN COMBINATION WITH DA-143)

Input Voltage: -10V to +10V (-180° to +180°)

Output Voltage: ±10V to +10V

Operable Functions: Sin\(\frac{\pi}{2}X\), Cos\(\frac{\pi}{2}X\), Sin\(\pi\), Cos\(\pi\)

Static Accuracy at \(\frac{\pi}{2}\) Range: ±0.5% of FS, Typical
±1% of FS, Maximum

Frequency Bandwidth (-3dB) at \(\frac{\pi}{2}\) Range: 100kHz, Minimum
Phase Shift at 1kHz: 0.3°, Maximum
Drift at $\frac{2}{3}$ Range: 10mV/8 hours Max. at same temperature

21. MODEL FG-144A, QUAD SQUARE 'X', DFG, (IN COMBINATION WITH DA-143)
Input Voltage: 0 to +10V or 0 to -10V
Segments: 10/channel
Static Accuracy: ±0.1% of FS, Typical
±0.2% of FS, Maximum
Frequency Bandwidth (-3dB): 100kHz
Phase Shift at 1kHz: 0.3° (10Vp-p Input), Typical

22. MODEL FG-145A, QUAD LOG 'X', DFG (IN COMBINATION WITH DA-143)
Input Voltage: -0.1V to -10V, or 0.1V to 10V
Output Voltage: 0 to 10V or 0 to -10V
Segments: 6/channel
Static Accuracy: ±0.5% of FS, Typical
at 1V<i>^{Input}</i>≤10V
Frequency Bandwidth (-3dB): 10kHz (10VDC + 1Vp-p Input)
Phase Shift at 1kHz: 0.3°, Typical

23. MODEL FD-141, FREE RESISTORS & DIODES
Silicon Diode: 10 ea.
Resistor: 100KΩ 0.1%
10 ea.

24. MODEL ZO-141, FREE RESISTORS & CAPACITORS
Capacitor: 1.0μF ±0.1% 2 ea.
0.1μF ±0.5% 2 ea.
0.01μF ±0.5% 2 ea.
0.001μF ±1.0% 2 ea.
Resistor: 1MΩ ±0.1% 8 ea.
10kΩ ±0.1% 4 ea.

25. MODEL ZO-142, FREE RESISTORS & CAPACITORS
Capacitor: 10μF 1% 8 ea
Resistor: 1MΩ ±0.1% 8 ea.
10kΩ ±0.1% 4 ea.

26. MODEL TD-141, TIME DELAY UNIT
Input Voltage: -10V to +10V
Output Voltage: -10V to +10V
Delay Time: (A) 10 to 0.1 sec (0.1 sec/step)
(B) 1 to 0.01 sec (0.01 sec/step)
(C) 0.1 to 0.001 sec (0.001 sec/step)
(D) 0.01 to 0.0001 sec (0.0001 sec/step)
Accuracy: ±2% at (A) (B)
±10% at (C)
Amplitude error: ±0.2% at D.C. all range
27. **MODEL TR-141, FORTY (40) TRUNKS**

External Trunk Line 40 trunks

(20 addressable trunks)

28. **MODEL CP-142, QUAD COMPARATORS WITH AMPLIFIERS AND QUAD ELECTRONIC SWITCHES**

Quad Comparators with Amplifiers
Input resistors 2 ea. 10 kohm ±0.01%
Sensitivity ±5 mV maximum with hysteresis characteristics
Response at output voltage 1μsec, maximum

Quad Electronic Switches
Analog Input Resistance 100 kohms ± 0.05% including resistance of electronic switch
Equivalent Off Impedance 1,000 Mohms, Minimum, at 10V
Propagation Time 1μsec. Maximum
Offset Current 10^-9 A, Maximum
Control Input Resistance 10 kohms, approx.
Analog Input Voltage -10V to +10V
Control Voltage ±6V (ON) and 0V (OFF), approx.
Threshold Level ±3V, approx.

29. **MODEL AS-141, QUAD ELECTRONIC SWITCHES**

Analog Input Resistance 100 kohms ± 0.05% including resistance of electronic switch
Equivalent Off Impedance 1,000 Mohms, Minimum, at 10V
Propagation Time 1μsec. Maximum
Offset Current 10^-9 A, Maximum
Control Input Resistance 10 kohms, approx.
Analog Input Voltage -10V to +10V
Control Voltage ±6V (ON) and 0V (OFF), approx.
Threshold Level ±3V, approx.

30. **MODEL RL-141, QUAD RELAY**

Relay Double pole, double throw
Operable signal Logic signal or equivalent
Speed 10 msec, maximum

31. **MODEL RL-142, QUAD RELAY & TRIPLE LIMITER**

Relay Double pole, double throw
Operable signal Logic signal or equivalent
Speed 10 msec, maximum
Limiters to be used in conjunction with a 100 kohm/100 kohm amplifier
Number of limiters 3 limiters
Maximum limit ±10V
Minimum limit ±4V
Slope after limit 5mV/V

32. **MODEL BL-240, BASIC LOGIC, MODULAR CONSOLE**

32.1 General Specification

Logic Level 0 and +6V, Nominal
Fan Out 6 minimum
Circuit All solid state
Control Modes CLEAR, RUN, STOP and STEP
Clock 10µs, 100µs, 1ms, 10ms, 100ms
Clock accuracy ±0.01%

32.2 Function
Switches Comparators 8
Flip-flops 10
Manual switches 2

Indicators Logic gates 16
Flip-flops 10
Counters 40
Comparators 8
Manual switches 2

Decade switches 4
System Control Switch (P.B.)
(Clear, Run, Stop, Step) 1

33. MODEL LG-141, EIGHT (8) LOGIC GATES
Function AND gates with Inverter
Modes AND, NAND
Outputs True and Complement

34. MODEL FF-141, FIVE (5) FLIP-FLOPS
Central Control Clear
States Set and Reset

35. MODEL CU-141, TWO (2) SINGLE DECADE COUNTERS
Single Decade Counters
Control Inputs RUN CLEAR
Control Outputs Decimal 0 to 9 outputs, Carry-out and N-out
State Indication By Terminated indicators

36. MODEL CU-142, TWO (2) SINGLE DECADE COUNTERS
Single Decade Counter
Control Inputs RUN, CLEAR
Control Outputs Decimal 0 to 9 Carry-out and N-out
State Indication By Terminated indicators

37. MODEL PP-242, PATCH PANEL FOR MODEL BA-220 BASIC ANALOG COMPUTER
Color coded
Non shielded
800 patching holes

38. MODEL PP-244, PATCH PANEL FOR MODEL BA-240 BASIC ANALOG COMPUTER
Color coded
Non shielded
1440 patching holes
39. MODEL PP-246, PATCH PANEL FOR MODEL BA-260 BASIC ANALOG COMPUTER

Color coded
Non shielded
2160 patching holes

40. MODEL PK-240, PATCH CORD KIT

Kit consists of following:
20 each, Patch cord, PC-015 (10 cm)
40 each, Patch cord, PC-025 (20 cm)
20 each, Patch cord, PC-045 (40 cm)
10 each, Patch cord, PC-065 (60 cm)
10 each, Patch cord, PC-085 (80 cm)
30 each, Bottle plug BP-025 (2 pins)
20 each, Bottle plug, BP-245 (4 pins)
10 each, Connecting Jacks

41. MODEL MU-041, MAINTENANCE UNIT

Maintenance unit for maintenance of modules

42. MODEL OS-242A, OSCILLOSCOPE UNIT, WITHOUT CABINET, FOR INSTALLATION IN BASIC LOGIC MODULAR CONSOLE

Indicator Unit 9 Inches Square Cathode-Ray Tube
Inputs Four Vertical, One Horizontal Inputs, Trigger input and Blanking input
Full scale Range 2, 1, 0.5, 0.2
Time Range 10ms, 20ms, 50ms, 100ms, 200ms, 500ms, 1s, 2s, per Full Scale
Reading Accuracy ±3% of Full Scale
Scale Electronic Scale Illumination by 11 x 11 grid lines
Adjustments Intensity, Scale Intensity, Scanning Frequency, Positions, Trigger

-Complete-

Hitachi Electronics Co., Ltd.
23-2, 1-chome, Kanda sudacho, Chiyoda-ku, Tokyo 101
Telephone: Tokyo (255) 8411
Cable Address: "HITACHY" TOKYO
Telex: J22395, 22432, 24491, 26378

Exporters:
Nissei Sangyo Co., Ltd.
15-12, Nishi-Shimbashi
2-chome, Minato-ku
Tokyo 105
Cable: NISSECO TOKYO
Telex: TK2412 NISSEICO

Subject to change without notice